List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700238/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of topographical features on the surface appearance measurement of injection moulded components. Polymer Testing, 2021, 93, 106968.                                                                                | 2.3 | 3         |
| 2  | Impact of Titanium Dioxide in the Mechanical Recycling of Post-Consumer Polyethylene Terephthalate<br>Bottle Waste: Tensile and Fracture Behavior. Polymers, 2021, 13, 310.                                                  | 2.0 | 10        |
| 3  | Poly (Lactic Acid)/Ground Tire Rubber Blends Using Peroxide Vulcanization. Polymers, 2021, 13, 1496.                                                                                                                         | 2.0 | 10        |
| 4  | Extruded-Calendered Sheets of Fully Recycled PP/Opaque PET Blends: Mechanical and Fracture<br>Behaviour. Polymers, 2021, 13, 2360.                                                                                           | 2.0 | 3         |
| 5  | Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polymer Testing, 2021, 101, 107313.                                         | 2.3 | 19        |
| 6  | Structure and Properties of Reactively Extruded Opaque Post-Consumer Recycled PET. Polymers, 2021, 13, 3531.                                                                                                                 | 2.0 | 17        |
| 7  | Elastocaloric effect in vulcanized natural rubber and natural/wastes rubber blends. Polymer, 2021, 236, 124309.                                                                                                              | 1.8 | 17        |
| 8  | Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends. Polymers, 2021, 13, 3996.                                                                                                                  | 2.0 | 19        |
| 9  | Orientation of Polylactic Acid–Chitin Nanocomposite Films via Combined Calendering and Uniaxial<br>Drawing: Effect on Structure, Mechanical, and Thermal Properties. Nanomaterials, 2021, 11, 3308.                          | 1.9 | 5         |
| 10 | Multivariate identification of extruded PLA samples from the infrared spectrum. Journal of Materials<br>Science, 2020, 55, 1269-1279.                                                                                        | 1.7 | 10        |
| 11 | PLA/PA Bio-Blends: Induced Morphology by Extrusion. Polymers, 2020, 12, 10.                                                                                                                                                  | 2.0 | 16        |
| 12 | Heat source and voiding signatures of Mullins damage in filled EPDM. Polymer Testing, 2020, 91, 106838.                                                                                                                      | 2.3 | 8         |
| 13 | Effect of the Strain Rate on Damage in Filled EPDM during Single and Cyclic Loadings. Polymers, 2020, 12, 3021.                                                                                                              | 2.0 | 9         |
| 14 | Biphasic polylactide/polyamide 6,10 blends: Influence of composition on polyamide structure and polyester crystallization. Polymer, 2020, 202, 122676.                                                                       | 1.8 | 11        |
| 15 | Effect of Chitin Nanocrystals on Crystallization and Properties of Poly(lactic acid)-Based<br>Nanocomposites. Polymers, 2020, 12, 726.                                                                                       | 2.0 | 19        |
| 16 | Melt-processing of cellulose nanofibril/polylactide bionanocomposites via a sustainable polyethylene<br>glycol-based carrier system. Carbohydrate Polymers, 2019, 224, 115188.                                               | 5.1 | 20        |
| 17 | The Effect of Titanium Dioxide Surface Modification on the Dispersion, Morphology, and Mechanical Properties of Recycled PP/PET/TiO2 PBNANOs. Polymers, 2019, 11, 1692.                                                      | 2.0 | 10        |
| 18 | Using the small punch test to analyse the influence of ultraviolet radiation on the mechanical<br>behaviour of recycled polyethylene terephthalate. Journal of Strain Analysis for Engineering Design,<br>2019, 54, 401-407. | 1.0 | 5         |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Microcellular injection moulding: A comparison between MuCell process and the novel<br>micro-foaming technology IQ Foam. Journal of Materials Processing Technology, 2019, 268, 162-170.                   | 3.1 | 29        |
| 20 | Crystallization of triethylâ€citrateâ€plasticized poly(lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 2019, 136, 47936.                                                  | 1.3 | 30        |
| 21 | Improvement of the replication quality of randomly micro-textured injection-moulding components using a multi-scale surface analysis. Journal of Manufacturing Processes, 2019, 42, 67-81.                 | 2.8 | 9         |
| 22 | Mechanical and Barrier Properties Enhancement in Film Extruded Bioâ€Polyamides With Modified<br>Nanoclay. Polymer Composites, 2019, 40, 2617-2628.                                                         | 2.3 | 12        |
| 23 | Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Composites Part B: Engineering, 2019, 163, 761-768.                                      | 5.9 | 44        |
| 24 | Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Composites Part<br>B: Engineering, 2018, 148, 188-197.                                                                  | 5.9 | 42        |
| 25 | Poly(lactic acid) and acrylonitrileâ `'butadieneâ `'styrene blends: Influence of adding ABSâ `'gâ `'MAH<br>compatibilizer on the kinetics of the thermal degradation. Polymer Testing, 2018, 67, 468-476.  | 2.3 | 10        |
| 26 | Microcellular PP/GF composites: Morphological, mechanical and fracture characterization.<br>Composites Part A: Applied Science and Manufacturing, 2018, 104, 1-13.                                         | 3.8 | 35        |
| 27 | Multivariable methods applied to FTIR: A powerful technique to highlight architectural changes in poly(lactic acid). Polymer Testing, 2018, 65, 264-269.                                                   | 2.3 | 18        |
| 28 | Effect of the viscosity ratio on the PLA/PA10.10 bioblends morphology and mechanical properties.<br>EXPRESS Polymer Letters, 2018, 12, 569-582.                                                            | 1.1 | 25        |
| 29 | Influence of injection molding parameters on the morphology, mechanical and surface properties of <scp>ABS</scp> foams. Advances in Polymer Technology, 2018, 37, 2707-2720.                               | 0.8 | 13        |
| 30 | Thermal degradation of poly(lactic acid) and acrylonitrile-butadiene-styrene bioblends: Elucidation of reaction mechanisms. Thermochimica Acta, 2017, 654, 157-167.                                        | 1.2 | 14        |
| 31 | PLA/SiO <sub>2</sub> composites: Influence of the filler modifications on the morphology,<br>crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 2017, 134,<br>45367. | 1.3 | 43        |
| 32 | Microwaveâ€crosslinked bioâ€based starch/clay aerogels. Polymer International, 2016, 65, 899-904.                                                                                                          | 1.6 | 27        |
| 33 | Effect of microcellular foaming on the fracture behavior of ABS polymer. Journal of Applied Polymer Science, 2016, 133, .                                                                                  | 1.3 | 15        |
| 34 | Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites.<br>Composites Part A: Applied Science and Manufacturing, 2016, 88, 106-115.                                | 3.8 | 22        |
| 35 | Application of the miniature small punch test for the mechanical characterization of polymer materials. Theoretical and Applied Fracture Mechanics, 2016, 86, 78-83.                                       | 2.1 | 19        |
| 36 | Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field. Molecular Simulation, 2016, 42, 1014-1023.                                                   | 0.9 | 14        |

| #  | Article                                                                                                                                                                                               | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 37 | Morphology and Mechanical Characterization of ABS Foamed by Microcellular Injection Molding.<br>Procedia Engineering, 2015, 132, 15-22.                                                               | 1.2              | 11                |
| 38 | The Influence of the Clay Particles on the Mechanical Properties and Fracture Behavior of PLA/oâ€MMT<br>Composite Films. Advances in Polymer Technology, 2015, 34, .                                  | 0.8              | 11                |
| 39 | Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process. EXPRESS Polymer Letters, 2015, 9, 185-195.                                                                 | 1.1              | 17                |
| 40 | Kinetics of the thermal degradation of poly(lactic acid) obtained by reactive extrusion: Influence of the addition of montmorillonite nanoparticles. Polymer Testing, 2015, 48, 69-81.                | 2.3              | 12                |
| 41 | Using viscoelastic properties to quantitatively estimate the amount of modified poly(lactic acid) chains through reactive extrusion. Journal of Rheology, 2015, 59, 1191-1227.                        | 1.3              | 26                |
| 42 | Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic) Tj ETQq0 0 0 rgBT 2014, 101, 52-59.                                                                  | /Overlock<br>2.7 | 10 Tf 50 54<br>22 |
| 43 | Sheets of branched poly(lactic acid) obtained by one-step reactive extrusion–calendering process: physical aging and fracture behavior. Journal of Materials Science, 2014, 49, 4093-4107.            | 1.7              | 30                |
| 44 | Cheaper membrane materials for microalgae dewatering. Journal of Materials Science, 2014, 49,<br>7031-7039.                                                                                           | 1.7              | 7                 |
| 45 | Small punch test on the analysis of fracture behaviour of PLA-nanocomposite films. Polymer Testing, 2014, 33, 21-29.                                                                                  | 2.3              | 27                |
| 46 | Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion.<br>Polymer Degradation and Stability, 2014, 104, 40-49.                                            | 2.7              | 24                |
| 47 | Effect of the Strain Rate and Drawing Temperature on the Mechanical Behavior of EVOH and EVOH<br>Composites. Advances in Polymer Technology, 2013, 32, .                                              | 0.8              | 7                 |
| 48 | Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with<br>different <scp>L</scp> â€isomer content. Journal of Applied Polymer Science, 2013, 127, 2661-2669. | 1.3              | 31                |
| 49 | Polymer/clay aerogel composites with flame retardant agents: Mechanical, thermal and fire behavior.<br>Materials & Design, 2013, 52, 609-614.                                                         | 5.1              | 84                |
| 50 | Analysis and Thermo-Mechanical Characterization of Mixed Plastic Wastes. Polymer-Plastics<br>Technology and Engineering, 2013, 52, 16-23.                                                             | 1.9              | 11                |
| 51 | Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid)<br>driven by random scission. Polymer Testing, 2013, 32, 937-945.                               | 2.3              | 47                |
| 52 | Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. EXPRESS Polymer Letters, 2013, 7, 304-318.                                  | 1.1              | 66                |
| 53 | Microcellular Foaming of Layered Double Hydroxideâ^Polymer Nanocomposites. Industrial &<br>Engineering Chemistry Research, 2011, 50, 5239-5247.                                                       | 1.8              | 32                |
| 54 | Mechanical Properties and Morphology of Multifunctional Polypropylene Foams. Frontiers in Forests<br>and Global Change, 2011, 30, 187-200.                                                            | 0.6              | 9                 |

| #  | Article                                                                                                                                                                                                   | IF        | CITATIONS          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|
| 55 | Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 2011, 178, 451-460.      | 6.6       | 69                 |
| 56 | Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite<br>nanocomposites prepared by twinâ€screw extrusion. Journal of Applied Polymer Science, 2011, 120,<br>896-905. | 1.3       | 34                 |
| 57 | Fracture behavior of quenched poly(lactic acid). EXPRESS Polymer Letters, 2011, 5, 82-91.                                                                                                                 | 1.1       | 47                 |
| 58 | Characterization of Highly Oriented Organoclay/Poly(methyl methacrylate) Moulded<br>Nanocomposites. Journal of Nanoscience and Nanotechnology, 2010, 10, 1304-1312.                                       | 0.9       | 2                  |
| 59 | Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid).<br>Journal of Polymers and the Environment, 2010, 18, 654-660.                                      | 2.4       | 49                 |
| 60 | Essential work of fracture testing of PC-rich PET/PC blends with and without transesterification catalysts. Journal of Materials Science, 2010, 45, 2907-2915.                                            | 1.7       | 7                  |
| 61 | Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC. Journal of Materials Science, 2010, 45, 6623-6633.                   | 1.7       | 36                 |
| 62 | Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 2010, 95, 116-125.                               | 2.7       | 547                |
| 63 | Kinetics of the thermal decomposition of processed poly(lactic acid). Polymer Degradation and Stability, 2010, 95, 2508-2514.                                                                             | 2.7       | 66                 |
| 64 | Fracture behaviour of de-aged poly(lactic acid) assessed by essential work of fracture and J-Integral methods. Polymer Testing, 2010, 29, 984-990.                                                        | 2.3       | 16                 |
| 65 | Essential work of fracture analysis of the tearing of a ductile polymer film. Engineering Fracture<br>Mechanics, 2010, 77, 2654-2661.                                                                     | 2.0       | 27                 |
| 66 | The effect of organoâ€modifier on the structure and properties of poly[ethylene–(vinyl) Tj ETQq0 0 0 rgBT /Ov                                                                                             | erloçk 10 | Tf 50 302 Td<br>11 |
| 67 | Influence of processing on the ethylene-vinyl alcohol (EVOH) properties: Application of the successive self-nucleation and annealing (SSA) technique. EXPRESS Polymer Letters, 2010, 4, 153-160.          | 1.1       | 40                 |
| 68 | Influence of EMAA compatibilizer on the structure and properties of HDPE/hydrotalcite nanocomposites prepared by melt mixing. Journal of Applied Polymer Science, 2009, 113, 950-958.                     | 1.3       | 18                 |
| 69 | Fracture behaviour of poly[ethylene–(vinyl alcohol)]/organoâ€clay composites. Polymer International,<br>2009, 58, 648-655.                                                                                | 1.6       | 14                 |
| 70 | The Essential Work of Fracture (EWF) method – Analyzing the Post-Yielding Fracture Mechanics of polymers. Engineering Failure Analysis, 2009, 16, 2604-2617.                                              | 1.8       | 116                |
| 71 | Influence of femtolaser notch sharpening technique in the determination of essential work of fracture (EWF) parameters. Engineering Fracture Mechanics, 2009, 76, 1247-1254.                              | 2.0       | 30                 |
| 72 | Fracture characterization of ductile polymers through methods based on load separation. Polymer Testing, 2009, 28, 204-208.                                                                               | 2.3       | 14                 |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Study of the interface behaviour between MABS/TPU bi-layer structures obtained through over moulding. Materials & Design, 2009, 30, 3979-3988.                                                                | 5.1 | 25        |
| 74 | Use of extensometers on essential work of fracture (EWF) tests. Polymer Testing, 2008, 27, 491-497.                                                                                                           | 2.3 | 22        |
| 75 | Essential work of fracture analysis of glass microsphere-filled polypropylene and polypropylene/poly<br>(ethylene terephthalate-co-isophthalate) blend-matrix composites. Polymer Testing, 2007, 26, 761-769. | 2.3 | 10        |
| 76 | Evaluation of the fracture behavior of multilayered polypropylene sheets obtained by coextrusion.<br>Polymer Engineering and Science, 2007, 47, 1365-1372.                                                    | 1.5 | 6         |
| 77 | Influence of processing on ethylene propylene block copolymers (II): Fracture behavior. Journal of<br>Applied Polymer Science, 2006, 101, 2714-2724.                                                          | 1.3 | 11        |
| 78 | The Effect of Glass Fibre and a Phosphorus-Containing Flame Retardant on the Flammability of Recycled PET. Macromolecular Symposia, 2005, 221, 175-184.                                                       | 0.4 | 7         |
| 79 | Poly(propylene)/PET/Undecyl Ammonium Montmorillonite Nanocomposites. Synthesis and Characterization. Macromolecular Symposia, 2005, 221, 63-74.                                                               | 0.4 | 13        |
| 80 | Impact characterization of a carbon fiber-epoxy laminate using a nonconservative model. Journal of Applied Polymer Science, 2005, 97, 2256-2263.                                                              | 1.3 | 14        |
| 81 | Determination of essential work of fracture in EPBC sheets obtained by different transformation processes. Journal of Materials Science, 2005, 40, 1967-1974.                                                 | 1.7 | 10        |
| 82 | Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polymer Engineering and Science, 2004, 44, 598-608.                              | 1.5 | 29        |
| 83 | Influence of processing on ethylene-propylene block copolymers: Structure and mechanical behavior.<br>Journal of Applied Polymer Science, 2004, 93, 2866-2878.                                                | 1.3 | 14        |
| 84 | Indentación por impacto de baja energÃa: modelo completo. Boletin De La Sociedad Espanola De<br>Ceramica Y Vidrio, 2004, 43, 324-326.                                                                         | 0.9 | 1         |
| 85 | Effects of Thickness, Deformation Rate and Energy Partitioning on the Work of Fracture Parameters of uPVC Films. Polymer Bulletin, 2003, 50, 279-286.                                                         | 1.7 | 34        |
| 86 | Effects of injection moulding induced morphology on the fracture behaviour of virgin and recycled polypropylene. Polymer, 2003, 44, 6959-6964.                                                                | 1.8 | 29        |
| 87 | On tearing of ductile polymer films using the essential work of fracture (EWF) method. Acta<br>Materialia, 2003, 51, 4929-4938.                                                                               | 3.8 | 51        |
| 88 | Essential Work of Fracture of Injection Moulded Samples of Pet and PET/PC Blends. European<br>Structural Integrity Society, 2003, 32, 77-88.                                                                  | 0.1 | 0         |
| 89 | Characterisation of filled and recycled PA6. Macromolecular Symposia, 2003, 194, 295-304.                                                                                                                     | 0.4 | 24        |
| 90 | The effect of compatibilizing and coupling agents on the mechanical properties of glass bead filled<br>PP/PET blends. Macromolecular Symposia, 2003, 194, 225-232.                                            | 0.4 | 3         |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Dynamic mechanical properties of polycarbonate and acrylonitrile-butadiene-styrene copolymer<br>blends. Journal of Applied Polymer Science, 2002, 83, 1507-1516. | 1.3 | 21        |
| 92  | Glass bead filled polystyrene composites: morphology and fracture. Polymer Bulletin, 2002, 47, 587-594.                                                          | 1.7 | 16        |
| 93  | Fracture behaviour of polypropylene films at different temperatures: fractography and deformation mechanisms studied by SEM. Polymer, 2002, 43, 3083-3091.       | 1.8 | 33        |
| 94  | Characterisation of injected EPBC plaques using the essential work of fracture (EWF) method.<br>Polymer, 2002, 43, 4177-4183.                                    | 1.8 | 45        |
| 95  | Filled PMMA: mechanical properties and fracture behaviour. Macromolecular Symposia, 2001, 169, 159-164.                                                          | 0.4 | 6         |
| 96  | Polypropylene filled with flame retardant fillers: mechanical and fracture properties.<br>Macromolecular Symposia, 2001, 169, 165-170.                           | 0.4 | 3         |
| 97  | Influence of annealing on the microstructural, tensile and fracture properties of polypropylene films. Polymer, 2001, 42, 1697-1705.                             | 1.8 | 136       |
| 98  | Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene.<br>Journal of Materials Science, 2001, 36, 2607-2613.       | 1.7 | 160       |
| 99  | Fracture behaviour of virgin and recycled isotactic polypropylene. Journal of Materials Science, 2001, 36, 5073-5078.                                            | 1.7 | 28        |
| 100 | Fracture behaviour of polypropylene films at different temperatures: assessment of the EWF parameters. Polymer, 2001, 42, 2665-2674.                             | 1.8 | 65        |
| 101 | Essential work of fracture on PET films: influence of the thickness and the orientation. Polymer Testing, 2000, 19, 559-568.                                     | 2.3 | 49        |
| 102 | On the essential work of fracture method: Energy partitioning of the fracture process in iPP films.<br>Polymer Bulletin, 1999, 42, 101-108.                      | 1.7 | 57        |
| 103 | Low-rate fracture behaviour of magnesium hydroxide filled polypropylene block copolymer. Polymer<br>Bulletin, 1998, 41, 615-622.                                 | 1.7 | 21        |
| 104 | Polycarbonate/acrylonitrile-butadiene-styrene blends: miscibility and interfacial adhesion. Polymer<br>Bulletin, 1998, 41, 721-728.                              | 1.7 | 19        |
| 105 | Toughening of unsaturated polyester with rubber particles. Part I: Morphological study. Polymer<br>Engineering and Science, 1998, 38, 282-289.                   | 1.5 | 16        |
| 106 | Toughening of unsaturated polyester with rubber particles. Part II: Fracture behavior. Polymer<br>Engineering and Science, 1998, 38, 290-298.                    | 1.5 | 13        |
| 107 | The essential work of fracture of a thermoplastic elastomer. Polymer Bulletin, 1997, 39, 249-255.                                                                | 1.7 | 20        |
| 108 | Plane strain essential work of fracture in SENB geometry at low and high strain rates of PC/ABS<br>blends. Polymer Bulletin, 1997, 39, 511-518.                  | 1.7 | 18        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Hydrostatic pressure dependence in tensile and compressive behavior of an<br><scp>acrylonitrile–butadiene–styrene</scp> copolymer. Journal of Applied Polymer Science, 0, , 52295. | 1.3 | 4         |