Mary K Estes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700140/publications.pdf

Version: 2024-02-01

254 papers

22,675 citations

79 h-index

6592

139 g-index

278 all docs

278 docs citations

times ranked

278

12068 citing authors

#	Article	IF	CITATIONS
1	Replication of human noroviruses in stem cell–derived human enteroids. Science, 2016, 353, 1387-1393.	6.0	1,056
2	Norovirus Gastroenteritis. New England Journal of Medicine, 2009, 361, 1776-1785.	13.9	931
3	X-ray Crystallographic Structure of the Norwalk Virus Capsid. Science, 1999, 286, 287-290.	6.0	820
4	Sequence and Genomic Organization of Norwalk Virus. Virology, 1993, 195, 51-61.	1.1	615
5	Norwalk Virus Shedding after Experimental Human Infection. Emerging Infectious Diseases, 2008, 14, 1553-1557.	2.0	608
6	Laboratory efforts to cultivate noroviruses. Journal of General Virology, 2004, 85, 79-87.	1.3	517
7	Norwalk Virus Infection and Disease Is Associated with ABO Histo–Blood Group Type. Journal of Infectious Diseases, 2002, 185, 1335-1337.	1.9	429
8	Norovirus Vaccine against Experimental Human Norwalk Virus Illness. New England Journal of Medicine, 2011, 365, 2178-2187.	13.9	429
9	Rotavirus infection. Nature Reviews Disease Primers, 2017, 3, 17083.	18.1	419
10	Norwalk Virus Infection of Volunteers: New Insights Based on Improved Assays. Journal of Infectious Diseases, 1994, 170, 34-43.	1.9	412
11	Rotaviruses: From Pathogenesis to Vaccination. Gastroenterology, 2009, 136, 1939-1951.	0.6	346
12	Diagnosis of Noncultivatable Gastroenteritis Viruses, the Human Caliciviruses. Clinical Microbiology Reviews, 2001, 14, 15-37.	5.7	333
13	Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology. Journal of Virology, 2016, 90, 43-56.	1.5	298
14	Norovirus disease: changing epidemiology and host susceptibility factors. Trends in Microbiology, 2004, 12, 279-287.	3.5	284
15	Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature, 2012, 485, 256-259.	13.7	283
16	Viral gastroenteritis. Lancet, The, 2018, 392, 175-186.	6.3	283
17	The Epidemiologic and Clinical Importance of Norovirus Infection. Gastroenterology Clinics of North America, 2006, 35, 275-290.	1.0	264
18	Determination of the 50% Human Infectious Dose for Norwalk Virus. Journal of Infectious Diseases, 2014, 209, 1016-1022.	1.9	261

#	Article	IF	CITATIONS
19	Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology. Journal of Biological Chemistry, 2016, 291, 3759-3766.	1.6	238
20	Norwalk Virus Open Reading Frame 3 Encodes a Minor Structural Protein. Journal of Virology, 2000, 74, 6581-6591.	1.5	236
21	Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9175-9180.	3.3	236
22	Serological Correlate of Protection against Norovirusâ€Induced Gastroenteritis. Journal of Infectious Diseases, 2010, 202, 1212-1218.	1.9	233
23	Norwalk Virus-Like Particle Hemagglutination by Binding to H Histo-Blood Group Antigens. Journal of Virology, 2003, 77, 405-415.	1.5	230
24	Norovirus Vaccine Against Experimental Human GII.4 Virus Illness: A Challenge Study in Healthy Adults. Journal of Infectious Diseases, 2015, 211, 870-878.	1.9	223
25	Recombinant Norwalk virus–like particles given orally to volunteers: Phase I study. Gastroenterology, 1999, 117, 40-48.	0.6	218
26	Stem Cell-Derived Human Intestinal Organoids as an Infection Model for Rotaviruses. MBio, 2012, 3, e00159-12.	1.8	216
27	Enterohemorrhagic Escherichia coli Reduces Mucus and Intermicrovillar Bridges in Human Stem Cell-Derived Colonoids. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 48-62.e3.	2.3	195
28	Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle. Scientific Reports, 2017, 7, 42296.	1.6	193
29	Protective Effect of Natural Rotavirus Infection in an Indian Birth Cohort. New England Journal of Medicine, 2011, 365, 337-346.	13.9	190
30	Prevention and cure of rotavirus infection via TLR5/NLRC4–mediated production of IL-22 and IL-18. Science, 2014, 346, 861-865.	6.0	188
31	Noroviruses everywhere: has something changed?. Current Opinion in Infectious Diseases, 2006, 19, 467-474.	1.3	182
32	Human Norovirus Replication in Human Intestinal Enteroids as Model to Evaluate Virus Inactivation. Emerging Infectious Diseases, 2018, 24, 1453-1464.	2.0	179
33	Structural Requirements for the Assembly of Norwalk Virus-Like Particles. Journal of Virology, 2002, 76, 4044-4055.	1.5	175
34	Correlation of patient immune responses with genetically characterized small round-structured viruses involved in outbreaks of nonbacterial acute gastroenteritis in the United States, 1990 to 1995., 1997, 53, 372-383.		171
35	Human enteroids as an <i>ex-vivo</i> model of hostâ€"pathogen interactions in the gastrointestinal tract. Experimental Biology and Medicine, 2014, 239, 1124-1134.	1.1	169
36	Impact of Rotavirus Infection at a Large Pediatric Hospital. Journal of Infectious Diseases, 1990, 162, 598-607.	1.9	163

#	Article	IF	CITATIONS
37	Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Research, 1984, 1, 133-152.	1.1	160
38	Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology. Gastroenterology, 2016, 150, 638-649.e8.	0.6	160
39	X-ray structure of a native calicivirus: Structural insights into antigenic diversity and host specificity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8048-8053.	3.3	159
40	Epidemiology of human noroviruses and updates on vaccine development. Current Opinion in Gastroenterology, 2014, 30, 25-33.	1.0	156
41	Development of Methods To Detect "Norwalk-Like Viruses―(NLVs) and Hepatitis A Virus in Delicatessen Foods: Application to a Food-Borne NLV Outbreak. Applied and Environmental Microbiology, 2000, 66, 213-218.	1.4	148
42	Norwalk virus infection associates with secretor status genotyped from sera. Journal of Medical Virology, 2005, 77, 116-120.	2.5	148
43	A Functional NSP4 Enterotoxin Peptide Secreted from Rotavirus-Infected Cells. Journal of Virology, 2000, 74, 11663-11670.	1.5	145
44	Noroviruses: The Most Common Pediatric Viral Enteric Pathogen at a Large University Hospital After Introduction of Rotavirus Vaccination. Journal of the Pediatric Infectious Diseases Society, 2013, 2, 57-60.	0.6	145
45	Autophagy hijacked through viroporin-activated calcium/calmodulin-dependent kinase kinase- \hat{l}^2 signaling is required for rotavirus replication. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3405-13.	3.3	142
46	Norwalk Virus RNA Is Infectious in Mammalian Cells. Journal of Virology, 2007, 81, 12238-12248.	1.5	141
47	Structural Analysis of Histo-Blood Group Antigen Binding Specificity in a Norovirus GII.4 Epidemic Variant: Implications for Epochal Evolution. Journal of Virology, 2011, 85, 8635-8645.	1.5	138
48	Human milk oligosaccharides, milk microbiome and infant gut microbiome modulate neonatal rotavirus infection. Nature Communications, 2018, 9, 5010.	5.8	130
49	Trypsin Cleavage Stabilizes the Rotavirus VP4 Spike. Journal of Virology, 2001, 75, 6052-6061.	1.5	128
50	Inter- and Intragenus Structural Variations in Caliciviruses and Their Functional Implications. Journal of Virology, 2004, 78, 6469-6479.	1.5	122
51	Mutations in Rotavirus Nonstructural Glycoprotein NSP4 Are Associated with Altered Virus Virulence. Journal of Virology, 1998, 72, 3666-3672.	1.5	122
52	Rotavirus Disrupts Calcium Homeostasis by NSP4 Viroporin Activity. MBio, 2010, 1, .	1.8	121
53	Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry. Molecular and Cellular Proteomics, 2010, 9, 1742-1751.	2.5	118
54	Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity. Journal of Virology, 1998, 72, 9233-9246.	1.5	118

#	Article	IF	Citations
55	ICTV Virus Taxonomy Profile: Caliciviridae. Journal of General Virology, 2019, 100, 1469-1470.	1.3	117
56	Rotavirus 2/6 Viruslike Particles Administered Intranasally with Cholera Toxin, Escherichia coli Heat-Labile Toxin (LT), and LT-R192G Induce Protection from Rotavirus Challenge. Journal of Virology, 1998, 72, 3390-3393.	1.5	116
57	Norwalk Virus Minor Capsid Protein VP2 Associates within the VP1 Shell Domain. Journal of Virology, 2013, 87, 4818-4825.	1.5	115
58	Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses. Molecular and Cellular Proteomics, 2014, 13, 2944-2960.	2.5	113
59	A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E570-E579.	3.3	112
60	Human Intestinal Enteroids: New Models to Study Gastrointestinal Virus Infections. Methods in Molecular Biology, 2017, 1576, 229-247.	0.4	112
61	Serological Correlates of Protection against a GII.4 Norovirus. Vaccine Journal, 2015, 22, 923-929.	3.2	109
62	Milk Oligosaccharides Inhibit Human Rotavirus Infectivity in MA104 Cells. Journal of Nutrition, 2017, 147, 1709-1714.	1.3	107
63	Human mini-guts: new insights into intestinal physiology and host–pathogen interactions. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 633-642.	8.2	104
64	Human noroviruses: recent advances in a 50-year history. Current Opinion in Infectious Diseases, 2018, 31, 422-432.	1.3	103
65	Comparative Study of the Epidemiology of Rotavirus in Children from a Community-Based Birth Cohort and a Hospital in South India. Journal of Clinical Microbiology, 2006, 44, 2468-2474.	1.8	101
66	Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10327-10332.	3.3	99
67	Antigenic Mapping of the Recombinant Norwalk Virus Capsid Protein Using Monoclonal Antibodies. Virology, 1996, 217, 252-261.	1.1	98
68	Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology, 1992, 188, 77-84.	1.1	97
69	NSP4 elicits age-dependent diarrhea and Ca ²⁺ mediated I ^{â^'} influx into intestinal crypts of CF mice. American Journal of Physiology - Renal Physiology, 1999, 277, G431-G444.	1.6	95
70	Prospects and Challenges in the Development of a Norovirus Vaccine. Clinical Therapeutics, 2017, 39, 1537-1549.	1.1	95
71	Microbial Metabolic Capacity for Intestinal Folate Production and Modulation of Host Folate Receptors. Frontiers in Microbiology, 2019, 10, 2305.	1.5	95
72	Pathogenesis of Rotavirus Gastroenteritis. Novartis Foundation Symposium, 2008, 238, 82-100.	1.2	91

#	Article	IF	Citations
73	VIII. Pathological consequences of rotavirus infection and its enterotoxin. American Journal of Physiology - Renal Physiology, 2001, 281, G303-G310.	1.6	88
74	X-Ray Crystallographic Structure of the Norwalk Virus Protease at 1.5-AÌŠ Resolution. Journal of Virology, 2006, 80, 5050-5058.	1.5	88
75	Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology, 2010, 406, 1-11.	1.1	88
76	A Subviral Particle Binding Domain on the Rotavirus Nonstructural Glycoprotein NS28. Virology, 1993, 194, 665-673.	1.1	87
77	Cross-Reactivity among Several Recombinant Calicivirus Virus-Like Particles (VLPs) with Monoclonal Antibodies Obtained from Mice Immunized Orally with One Type of VLP. Journal of Clinical Microbiology, 2002, 40, 2459-2465.	1.8	85
78	Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. Journal of General Virology, 2016, 97, 2291-2300.	1.3	85
79	Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses, 2019, 11, 638.	1.5	84
80	Mechanism of genome transcription in segmented dsRNA viruses. Advances in Virus Research, 2000, 55, 185-229.	0.9	82
81	Identification of Genogroup I and Genogroup II Broadly Reactive Epitopes on the Norovirus Capsid. Journal of Virology, 2005, 79, 7402-7409.	1.5	82
82	Adsorption and Aggregation Properties of Norovirus GI and GII Virus-like Particles Demonstrate Differing Responses to Solution Chemistry. Environmental Science & Eamp; Technology, 2011, 45, 520-526.	4.6	82
83	Engineered Human Gastrointestinal Cultures to Study the Microbiome and Infectious Diseases. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 241-251.	2.3	82
84	Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 2019, 17, 33.	1.7	82
85	Mucosal and Cellular Immune Responses to Norwalk Virus. Journal of Infectious Diseases, 2015, 212, 397-405.	1.9	81
86	Effects of Tunicamycin on Rotavirus Morphogenesis and Infectivity. Journal of Virology, 1983, 46, 270-274.	1.5	81
87	Molecular characterization of a human calicivirus with sequence relationships closer to animal caliciviruses than other known human caliciviruses. Journal of Medical Virology, 1995, 45, 215-222.	2.5	80
88	Evolutionary Trace Residues in Noroviruses: Importance in Receptor Binding, Antigenicity, Virion Assembly, and Strain Diversity. Journal of Virology, 2005, 79, 554-568.	1.5	80
89	Two types of glycoprotein precursors are produced by the simian rotavirus SA11. Virology, 1983, 127, 320-332.	1.1	79
90	In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE, 2017, 12, e0187880.	1.1	79

#	Article	IF	CITATIONS
91	Human organoid cultures: transformative new tools for human virus studies. Current Opinion in Virology, 2018, 29, 79-86.	2.6	78
92	New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. MSphere, 2021, 6, .	1.3	78
93	Novel Segment- and Host-Specific Patterns of Enteroaggregative $\langle i \rangle$ Escherichia coli $\langle i \rangle$ Adherence to Human Intestinal Enteroids. MBio, 2018, 9, .	1.8	75
94	Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1700-1710.	3.3	75
95	Expression and Self-Assembly of Grimsby Virus: Antigenic Distinction from Norwalk and Mexico Viruses. Vaccine Journal, 1999, 6, 142-145.	2.6	75
96	Group A Rotavirus Infection and Age-Dependent Diarrheal Disease in Rats: a New Animal Model To Study the Pathophysiology of Rotavirus Infection. Journal of Virology, 2002, 76, 41-57.	1.5	74
97	The VP8* Domain of Neonatal Rotavirus Strain G10P[11] Binds to Type II Precursor Glycans. Journal of Virology, 2013, 87, 7255-7264.	1.5	74
98	Heterotypic Protection and Induction of a Broad Heterotypic Neutralization Response by Rotavirus-Like Particles. Journal of Virology, 1999, 73, 4813-4822.	1.5	73
99	Distinct epidemiological patterns of Norwalk-like virus infection. Journal of Medical Virology, 2000, 62, 99-103.	2.5	72
100	Diversity in Rotavirus–Host Glycan Interactions: A "Sweet―Spectrum. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 263-273.	2.3	72
101	Integrins $\hat{l}\pm 1\hat{l}^21$ and $\hat{l}\pm 2\hat{l}^21$ are receptors for the rotavirus enterotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8811-8818.	3.3	71
102	Completion of the Norwalk virus genome sequence. Virus Genes, 1996, 12, 287-90.	0.7	70
103	Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells. Emerging Infectious Diseases, 2013, 19, 431-438.	2.0	69
104	Pathophysiological Consequences of Calcium-Conducting Viroporins. Annual Review of Virology, 2015, 2, 473-496.	3.0	67
105	Cryoelectron Microscopy Structures of Rotavirus NSP2-NSP5 and NSP2-RNA Complexes: Implications for Genome Replication. Journal of Virology, 2006, 80, 10829-10835.	1.5	66
106	Genetic Manipulation of Human Intestinal Enteroids Demonstrates the Necessity of a Functional Fucosyltransferase 2 Gene for Secretor-Dependent Human Norovirus Infection. MBio, 2020, 11, .	1.8	65
107	Rotavirus non-structural proteins: structure and function. Current Opinion in Virology, 2012, 2, 380-388.	2.6	63
108	Glycan recognition in globally dominant human rotaviruses. Nature Communications, 2018, 9, 2631.	5.8	63

#	Article	IF	Citations
109	Human norovirus exhibits strain-specific sensitivity to host interferon pathways in human intestinal enteroids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23782-23793.	3.3	63
110	Plasmid-based human norovirus reverse genetics system produces reporter-tagged progeny virus containing infectious genomic RNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4043-52.	3.3	60
111	Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 209-229.	2.3	60
112	Development of an immunomagnetic capture reverse transcription-PCR assay for the detection of Norwalk virus. Journal of Virological Methods, 2000, 90, 69-78.	1.0	59
113	Human Monoclonal Antibodies That Neutralize Pandemic GII.4ÂNoroviruses. Gastroenterology, 2018, 155, 1898-1907.	0.6	59
114	Activation of the Endoplasmic Reticulum Calcium Sensor STIM1 and Store-Operated Calcium Entry by Rotavirus Requires NSP4 Viroporin Activity. Journal of Virology, 2013, 87, 13579-13588.	1.5	58
115	Structural Characterization by Multistage Mass Spectrometry (MSn) of Human Milk Glycans Recognized by Human Rotaviruses. Molecular and Cellular Proteomics, 2014, 13, 2961-2974.	2.5	58
116	A Novel Form of Rotavirus NSP2 and Phosphorylation-Dependent NSP2-NSP5 Interactions Are Associated with Viroplasm Assembly. Journal of Virology, 2014, 88, 786-798.	1.5	57
117	Epidemiology of Norwalk virus during an outbreak of acute gastroenteritis aboard a US aircraft carrier. Journal of Medical Virology, 1995, 45, 61-67.	2.5	56
118	Serum Hemagglutination Inhibition Activity Correlates with Protection from Gastroenteritis in Persons Infected with Norwalk Virus. Vaccine Journal, 2012, 19, 284-287.	3.2	56
119	Inhibition of Cellular Protein Secretion by Norwalk Virus Nonstructural Protein p22 Requires a Mimic of an Endoplasmic Reticulum Export Signal. PLoS ONE, 2010, 5, e13130.	1.1	55
120	Epithelial WNT Ligands Are Essential Drivers of Intestinal Stem Cell Activation. Cell Reports, 2018, 22, 1003-1015.	2.9	54
121	Analysis of Host Range Restriction Determinants in the Rabbit Model: Comparison of Homologous and Heterologous Rotavirus Infections. Journal of Virology, 1998, 72, 2341-2351.	1.5	53
122	Identification of an Epitope Common to Genogroup 1 "Norwalk-Like Viruses― Journal of Clinical Microbiology, 2000, 38, 1656-1660.	1.8	52
123	Humoral and cell-mediated immune responses in humans to the NSP4 enterotoxin of rotavirus. , 1999, 59, 369-377.		50
124	Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus. Nature Communications, 2015, 6, 8346.	5.8	50
125	Rotavirus Calcium Dysregulation Manifests as Dynamic Calcium Signaling in the Cytoplasm and Endoplasmic Reticulum. Scientific Reports, 2019, 9, 10822.	1.6	50
126	Structural Basis of Substrate Specificity and Protease Inhibition in Norwalk Virus. Journal of Virology, 2013, 87, 4281-4292.	1.5	47

#	Article	IF	Citations
127	Viroporin-mediated calcium-activated autophagy. Autophagy, 2013, 9, 797-798.	4.3	46
128	The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annual Review of Physiology, 2017, 79, 291-312.	5.6	46
129	Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology, 2021, 160, 1301-1314.e8.	0.6	46
130	Neonatal Infection with G10P[11] Rotavirus Did Not Confer Protection against Subsequent Rotavirus Infection in a Community Cohort in Vellore, South India. Journal of Infectious Diseases, 2007, 195, 625-632.	1.9	45
131	Rotavirus induces intercellular calcium waves through ADP signaling. Science, 2020, 370, .	6.0	44
132	CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathogens, 2020, 16, e1008242.	2.1	44
133	Correlates of Protection against Norovirus Infection and Disease—Where Are We Now, Where Do We Go?. PLoS Pathogens, 2016, 12, e1005334.	2.1	44
134	Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Research and Therapy, 2013, 4, S3.	2.4	42
135	Physiologically relevant human tissue models for infectious diseases. Drug Discovery Today, 2016, 21, 1540-1552.	3.2	42
136	Telomere dysfunction activates YAP1 to drive tissue inflammation. Nature Communications, 2020, 11 , 4766.	5.8	42
137	Two successive outbreaks of SRSV-associated gastroenteritis in South Africa. Journal of Medical Virology, 1993, 41, 18-23.	2.5	41
138	Efficacy of a recombinant Norwalk virus protein enzyme immunoassay for the diagnosis of infections with Norwalk virus and other human "candidate―caliciviruses. Journal of Medical Virology, 1993, 41, 179-184.	2.5	41
139	Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5830-E5837.	3.3	41
140	Phosphorylation cascade regulates the formation and maturation of rotaviral replication factories. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12015-E12023.	3.3	39
141	Sensitive Detection of Norovirus Using Phage Nanoparticle Reporters in Lateral-Flow Assay. PLoS ONE, 2015, 10, e0126571.	1.1	37
142	Antiviral targets of human noroviruses. Current Opinion in Virology, 2016, 18, 117-125.	2.6	35
143	Norovirus Gastroenteritis in a Birth Cohort in Southern India. PLoS ONE, 2016, 11, e0157007.	1.1	35
144	Burden of Illness in the First 3 Years of Life in an Indian Slum. Journal of Tropical Pediatrics, 2010, 56, 221-226.	0.7	34

#	Article	IF	CITATIONS
145	Replication of Human Norovirus RNA in Mammalian Cells Reveals Lack of Interferon Response. Journal of Virology, 2016, 90, 8906-8923.	1.5	34
146	Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium. Infection and Immunity, 2017, 85, .	1.0	34
147	Comparison of Microneutralization and Histo-Blood Group Antigen–Blocking Assays for Functional Norovirus Antibody Detection. Journal of Infectious Diseases, 2019, 221, 739-743.	1.9	34
148	Prevalence of antibodies to human caliciviruses (HuCVs) in Kuwait established by ELISA using baculovirus-expressed capsid antigens representing two genogroups of HuCVs. Journal of Medical Virology, 1997, 51, 115-118.	2.5	33
149	Expression of Rotavirus NSP4 Alters the Actin Network Organization through the Actin Remodeling Protein Cofilin. Journal of Virology, 2007, 81, 3545-3553.	1.5	33
150	Structural basis of glycan interaction in gastroenteric viral pathogens. Current Opinion in Virology, 2014, 7, 119-127.	2.6	32
151	Experimental Human Infection with Norwalk Virus Elicits a Surrogate Neutralizing Antibody Response with Cross-Genogroup Activity. Vaccine Journal, 2015, 22, 221-228.	3 . 2	32
152	Epitope mapping and use of epitope-specific antisera to characterize the VP5⎠binding site in rotavirus SA11 NSP4. Virology, 2008, 373, 211-228.	1.1	31
153	Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3 . 3	31
154	Rotavirus vaccines and pathogenesis: 2008. Current Opinion in Gastroenterology, 2009, 25, 36-43.	1.0	30
155	In Vitro Models of the Small Intestine: Engineering Challenges and Engineering Solutions. Tissue Engineering - Part B: Reviews, 2020, 26, 313-326.	2.5	30
156	Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication. Journal of Virology, 2014, 88, 12866-12881.	1.5	29
157	Identification of human single-chain antibodies with broad reactivity for noroviruses. Protein Engineering, Design and Selection, 2014, 27, 339-349.	1.0	28
158	Gastrointestinal microphysiological systems. Experimental Biology and Medicine, 2017, 242, 1633-1642.	1.1	28
159	Telomere dysfunction instigates inflammation in inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
160	Characterization of Cross-Reactive Norovirus-Specific Monoclonal Antibodies. Vaccine Journal, 2015, 22, 160-167.	3.2	27
161	Frequent Use of the IgA Isotype in Human B Cells Encoding Potent Norovirus-Specific Monoclonal Antibodies That Block HBGA Binding. PLoS Pathogens, 2016, 12, e1005719.	2.1	27
162	Serological Responses to Experimental Norwalk Virus Infection Measured Using a Quantitative Duplex Time-Resolved Fluorescence Immunoassay. Vaccine Journal, 2011, 18, 1187-1190.	3.2	26

#	Article	lF	Citations
163	COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. Journal of Virology, 2019, 94, .	1.5	26
164	A Genetically Engineered Rotavirus NSP2 Phosphorylation Mutant Impaired in Viroplasm Formation and Replication Shows an Early Interaction between vNSP2 and Cellular Lipid Droplets. Journal of Virology, 2020, 94, .	1.5	26
165	Crystallographic Analysis of Rotavirus NSP2-RNA Complex Reveals Specific Recognition of 5′ GG Sequence for RTPase Activity. Journal of Virology, 2012, 86, 10547-10557.	1.5	25
166	Structural features of glycan recognition among viral pathogens. Current Opinion in Structural Biology, 2017, 44, 211-218.	2.6	25
167	Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathogens, 2020, 16, e1008851.	2.1	24
168	Genetic Divergence of Rotavirus Nonstructural Protein 4 Results in Distinct Serogroup-Specific Viroporin Activity and Intracellular Punctate Structure Morphologies. Journal of Virology, 2012, 86, 4921-4934.	1.5	23
169	Use of Human Intestinal Enteroids to Detect †Human Norovirus Infectivity. Emerging Infectious Diseases, 2019, 25, 1730-1735.	2.0	23
170	Generation of CRISPR–Cas9-mediated genetic knockout human intestinal tissue–derived enteroid lines by lentivirus transduction and single-cell cloning. Nature Protocols, 2022, 17, 1004-1027.	5. 5	23
171	Oral immunization with a shiga toxin B subunit::rotavirus NSP490 fusion protein protects mice against gastroenteritis. Vaccine, 2005, 23, 5168-5176.	1.7	22
172	Antibody Responses to Norovirus Genogroup Gl.1 and Gll.4 Proteases in Volunteers Administered Norwalk Virus. Vaccine Journal, 2012, 19, 1980-1983.	3.2	22
173	Structural Plasticity of the Coiled-Coil Domain of Rotavirus NSP4. Journal of Virology, 2014, 88, 13602-13612.	1.5	22
174	Two- and Three-Dimensional Bioengineered Human Intestinal Tissue Models for Cryptosporidium. Methods in Molecular Biology, 2020, 2052, 373-402.	0.4	22
175	Broadly cross-reactive human antibodies that inhibit genogroup I and II noroviruses. Nature Communications, 2021, 12, 4320.	5.8	21
176	Establishing Human Intestinal Enteroid/Organoid Lines from Preterm Infant and Adult Tissue. Methods in Molecular Biology, 2020, 2121, 185-198.	0.4	20
177	Organoid Models for Infectious Disease. Annual Review of Medicine, 2022, 73, 167-182.	5.0	20
178	The Human Nose Organoid Respiratory Virus Model: an <i>Ex Vivo</i> Human Challenge Model To Study Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Pathogenesis and Evaluate Therapeutics. MBio, 2022, 13, e0351121.	1.8	20
179	Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Frontiers in Physiology, 2022, 13, 836870.	1.3	20
180	Studies on the interaction of alpha subunits of GTP-binding proteins with betagamma dimers. FEBS Journal, 1992, 210, 609-619.	0.2	19

#	Article	IF	Citations
181	Dasabuvir Inhibits Human Norovirus Infection in Human Intestinal Enteroids. MSphere, 2021, 6, e0062321.	1.3	19
182	Atomic structure of the predominant GII.4 human norovirus capsid reveals novel stability and plasticity. Nature Communications, 2022, 13, 1241.	5.8	19
183	Use of Human Intestinal Enteroids to Evaluate Persistence of Infectious Human Norovirus in Seawater. Emerging Infectious Diseases, 2022, 28, 1475-1479.	2.0	18
184	Synthesis, activity and structure–activity relationship of noroviral protease inhibitors. MedChemComm, 2013, 4, 1354.	3.5	17
185	B-Cell Responses to Intramuscular Administration of a Bivalent Virus-Like Particle Human Norovirus Vaccine. Vaccine Journal, 2017, 24, .	3.2	17
186	Induced Differentiation of M Cell-like Cells in Human Stem Cell-derived Ileal Enteroid Monolayers. Journal of Visualized Experiments, 2019, , .	0.2	17
187	Intestinal stem cell-derived enteroids from morbidly obese patients preserve obesity-related phenotypes: Elevated glucose absorption and gluconeogenesis. Molecular Metabolism, 2021, 44, 101129.	3.0	17
188	Drivers of transcriptional variance in human intestinal epithelial organoids. Physiological Genomics, 2021, 53, 486-508.	1.0	17
189	Identification and Characterization of a Transcription Pause Site in Rotavirus. Journal of Virology, 2001, 75, 1632-1642.	1.5	16
190	$2.7~\tilde{A}$ cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. Science Advances, 2020, 6, eaay 6410.	4.7	16
191	Mapping Broadly Reactive Norovirus Genogroup I and II Monoclonal Antibodies. Vaccine Journal, 2015, 22, 168-177.	3.2	15
192	Use of organoids to study regenerative responses to intestinal damage. American Journal of Physiology - Renal Physiology, 2019, 317, G845-G852.	1.6	15
193	Changes of tight junction and interleukinâ€8 expression using a human gastroid monolayer model ofHelicobacter pyloriinfection. Helicobacter, 2019, 24, e12583.	1.6	15
194	Glycan Recognition in Human Norovirus Infections. Viruses, 2021, 13, 2066.	1.5	15
195	Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes, 2021, 13, 1988390.	4.3	15
196	Immunology and Immunopathology of the Intestines: Molecular Biology and Immunology of Rotavirus Infections. Immunological Investigations, 1989, 18, 571-581.	1.0	14
197	Protein-Functionalized Poly(ethylene glycol) Hydrogels as Scaffolds for Monolayer Organoid Culture. Tissue Engineering - Part C: Methods, 2021, 27, 12-23.	1.1	14
198	Standardization and Maintenance of 3D Canine Hepatic and Intestinal Organoid Cultures for Use in Biomedical Research. Journal of Visualized Experiments, 2022, , .	0.2	14

#	Article	IF	CITATIONS
199	Rotaviruses code for two types of glycoprotein precursors. Journal of Cellular Biochemistry, 1983, 22, 151-160.	1.2	12
200	Detection of â€~Norwalk-like viruses' in Vellore, southern India. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2000, 94, 681-683.	0.7	12
201	Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers. Scientific Reports, 2021, 11, 5401.	1.6	12
202	Clinical and In Vitro Evidence Favoring Immunoglobulin Treatment of a Chronic Norovirus Infection in a Patient With Common Variable Immunodeficiency. Journal of Infectious Diseases, 2022, 226, 1781-1789.	1.9	12
203	Norovirus Antigen Detection with a Combination of Monoclonal and Single-Chain Antibodies. Journal of Clinical Microbiology, 2015, 53, 3916-3918.	1.8	11
204	Organoids to Dissect Gastrointestinal Virus–Host Interactions: What Have We Learned?. Viruses, 2021, 13, 999.	1.5	11
205	Reconciliation of Rotavirus Temperature-Sensitive Mutant Collections and Assignment of Reassortment Groups D, J, and K to Genome Segments. Journal of Virology, 2011, 85, 5048-5060.	1.5	10
206	GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. Journal of Virology, $2019,93,.$	1.5	10
207	High-Resolution Mapping of Human Norovirus Antigens via Genomic Phage Display Library Selections and Deep Sequencing. Journal of Virology, 2020, 95, .	1.5	10
208	Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection. Journal of Biological Chemistry, 2020, 295, 15974-15987.	1.6	10
209	Distinct gene expression profiles between human preterm-derived and adult-derived intestinal organoids exposed to <i>Enterococcus faecalis</i> : a pilot study. Gut, 2022, 71, 2141-2143.	6.1	10
210	Novel fold of rotavirus glycan-binding domain predicted by AlphaFold2 and determined by X-ray crystallography. Communications Biology, 2022, 5, 419.	2.0	10
211	Serological Responses to a Norovirus Nonstructural Fusion Protein after Vaccination and Infection. Vaccine Journal, 2016, 23, 181-183.	3.2	9
212	Deep sequencing of phage-displayed peptide libraries reveals sequence motif that detects norovirus. Protein Engineering, Design and Selection, 2017, 30, 129-139.	1.0	9
213	Bile acids target proteolipid nano-assemblies of EGFR and phosphatidic acid in the plasma membrane for stimulation of MAPK signaling. PLoS ONE, 2018, 13, e0198983.	1.1	9
214	Enteropathogenic Escherichia coli Infection in Cancer and Immunosuppressed Patients. Clinical Infectious Diseases, 2021, 72, e620-e629.	2.9	9
215	Antiviral Activity of Olanexidine-Containing Hand Rub against Human Noroviruses. MBio, 2022, 13, e0284821.	1.8	9
216	A time-resolved immunoassay to measure serum antibodies to the rotavirus VP6 capsid protein. Journal of Virological Methods, 2013, 189, 228-231.	1.0	8

#	Article	IF	Citations
217	Development of a Gaussia Luciferase-Based Human Norovirus Protease Reporter System: Cell Type-Specific Profile of Norwalk Virus Protease Precursors and Evaluation of Inhibitors. Journal of Virology, 2014, 88, 10312-10326.	1.5	8
218	Human Sera Collected between 1979 and 2010 Possess Blocking-Antibody Titers to Pandemic GII.4 Noroviruses Isolated over Three Decades. Journal of Virology, 2017, 91, .	1.5	8
219	Epithelial WNT2B and Desert Hedgehog Are Necessary for Human Colonoid Regeneration after Bacterial Cytotoxin Injury. IScience, 2020, 23, 101618.	1.9	8
220	High Efficiency Crossâ€Reactive Monoclonal Antibody Production by Oral Immunization with Recombinant Norwalk Virus‣ike Particles. Microbiology and Immunology, 2006, 50, 883-888.	0.7	7
221	Bile Goes Viral. Viruses, 2021, 13, 998.	1.5	7
222	Use of human tissue stem cell-derived organoid cultures to model enterohepatic circulation. American Journal of Physiology - Renal Physiology, 2021, 321, G270-G279.	1.6	7
223	Evaluation of Heat Inactivation of Human Norovirus in Freshwater Clams Using Human Intestinal Enteroids. Viruses, 2022, 14, 1014.	1.5	7
224	Plasmid-based reverse genetics for probing phosphorylation-dependent viroplasm formation in rotaviruses. Virus Research, 2021, 291, 198193.	1.1	6
225	Norovirus in Cancer Patients: A Review. Open Forum Infectious Diseases, 2021, 8, ofab126.	0.4	6
226	Effect of substrate stiffness on human intestinal enteroids' infectivity by enteroaggregative Escherichia coli. Acta Biomaterialia, 2021, 132, 245-259.	4.1	6
227	Identification and Characterization of Single-Chain Antibodies that Specifically Bind GI Noroviruses. PLoS ONE, 2017, 12, e0170162.	1.1	6
228	Depletion of the apical endosome in response to viruses and bacterial toxins provides cell-autonomous host defense at mucosal surfaces. Cell Host and Microbe, 2022, 30, 216-231.e5.	5.1	6
229	A Millifluidic Perfusion Cassette for Studying the Pathogenesis of Enteric Infections Using Ex-Vivo Organoids. Annals of Biomedical Engineering, 2021, 49, 1233-1244.	1.3	5
230	Sperm Flagellar 1 Binds Actin in Intestinal Epithelial Cells and Contributes to Formation of Filopodia and Lamellipodia. Gastroenterology, 2019, 157, 1544-1555.e3.	0.6	4
231	Rotaviruses: cause of vaccine-preventable disease yet many fundamental questions remain to be explored. Current Opinion in Virology, 2012, 2, 369-372.	2.6	3
232	Gut Bacterial Bouncers: Keeping Viral Pathogens out of the Epithelium. Cell Host and Microbe, 2019, 26, 569-570.	5.1	3
233	Microbial Science Research in the Post-COVID Environment. MBio, 2021, 12, e0111621.	1.8	3
234	Norovirus Protease Structure and Antivirals Development. Viruses, 2021, 13, 2069.	1.5	3

#	Article	IF	CITATIONS
235	Viral Pathogens of the Intestine. , 0, , 525-545.		3
236	Reply to Kirby et al. Journal of Infectious Diseases, 2015, 211, 167-167.	1.9	2
237	Editorial overview: Viruses and cell metabolism. Current Opinion in Virology, 2016, 19, vii-viii.	2.6	2
238	Women in Science: Hints for Success. Gastroenterology, 2015, 149, 10-13.	0.6	1
239	Reoviruses (Reoviridae) and Their Structural Relatives. , 2021, , 303-317.		1
240	1098. Norovirus Infection in Cancer Patients Undergoing Chimeric Antigen Receptor T-cell Immunotherapy (CAR-T). Open Forum Infectious Diseases, 2020, 7, S578-S579.	0.4	1
241	<i>Caliciviridae</i> and <i>Astroviridae</i> ., 0, , 389-402.		1
242	A Rapid Method for Viral Particle Detection in Viral-Induced Gastroenteritis: A TEM Study. Microscopy and Microanalysis, 1995, 1, 185-189.	0.2	0
243	606Noroviruses (NoVs) as a Cause of Diarrhea in Immunocompromised Pediatric Transplant Recipients. Open Forum Infectious Diseases, 2014, 1, S27-S28.	0.4	0
244	Human Caliciviruses. , 2016, , 1189-1208.		0
245	Immune Response. , 2017, , 89-106.		0
246	2650. Evaluating Antiviral Agents for Human Noroviruses Using a Human Intestinal Enteroid Model. Open Forum Infectious Diseases, 2019, 6, S927-S928.	0.4	0
247	Cryo-EM Structure of Rotavirus VP3 Reveals Novel Insights into Its Role in RNA Capping and Endogenous Transcription. Springer Proceedings in Materials, 2021, , 211-220.	0.1	0
248	Modular, Topographically Patterned, Biomimetic Poly(Ethylene Glycol) Hydrogels as Customized Scaffolds for Organoid Culture. SSRN Electronic Journal, 0, , .	0.4	0
249	Dysregulation of Endogenous and Paracrine Calcium Signaling Pathways by Rotaviruses and Caliciviruses. FASEB Journal, 2020, 34, 1-1.	0.2	0
250	700. Risk Factors and Molecular Epidemiology of Acute and Chronic Norovirus Infection at a Large Tertiary Care Cancer Center. Open Forum Infectious Diseases, 2021, 8, S450-S451.	0.4	0
251	Title is missing!. , 2020, 16, e1008851.		0
252	Title is missing!. , 2020, 16, e1008851.		O

#	Article	IF	CITATIONS
253	Title is missing!. , 2020, 16, e1008851.		0
254	Title is missing!. , 2020, 16, e1008851.		0