
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700121/publications.pdf Version: 2024-02-01

LINC FAM

#	Article	IF	CITATIONS
1	Superstable potassium metal batteries with a controllable internal electric field. Fundamental Research, 2023, 3, 813-821.	1.6	5
2	N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery. Nano Research, 2022, 15, 2040-2046.	5.8	30
3	Layered Superconductor Cu _{0.11} TiSe ₂ as a Highâ€Stable K athode. Advanced Functional Materials, 2022, 32, 2109893.	7.8	30
4	Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nature Sustainability, 2022, 5, 225-234.	11.5	293
5	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
6	Weak Cation–Solvent Interactions in Etherâ€Based Electrolytes Stabilizing Potassiumâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	43
7	Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, .	4.6	123
8	An all-organic aqueous potassium dual-ion battery. Journal of Energy Chemistry, 2021, 57, 28-33.	7.1	52
9	Dual-Carbon Electrode-Based High-Energy-Density Potassium-Ion Hybrid Capacitor. ACS Applied Materials & Interfaces, 2021, 13, 8497-8506.	4.0	39
10	Regulating Solvent Molecule Coordination with KPF ₆ for Superstable Graphite Potassium Anodes. ACS Nano, 2021, 15, 9167-9175.	7.3	89
11	Prospects of Electrode Materials and Electrolytes for Practical Potassiumâ€Based Batteries. Small Methods, 2021, 5, e2101131.	4.6	129
12	Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002780.	10.2	60
13	Organic phosphomolybdate: a high capacity cathode for potassium ion batteries. Chemical Communications, 2020, 56, 12753-12756.	2.2	11
14	Sn-Sb compounds with novel structure for stable potassium storage. Chemical Engineering Journal, 2020, 395, 125147.	6.6	41
15	Alkaliâ€Metalâ€Ion Batteries: Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070198.	10.2	2
16	Hierarchically Porous Nâ€Doped Carbon Fibers as a Freeâ€Standing Anode for Highâ€Capacity Potassiumâ€Based Dualâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1901663.	10.2	128
17	Antimony–Graphite Composites for a Highâ€Performance Potassiumâ€Ion Battery. Energy Technology, 2019, 7, 1900634.	1.8	31
18	Rational Design of a Polyimide Cathode for a Stable and High-Rate Potassium-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 42078-42085.	4.0	55

#	Article	IF	CITATIONS
19	Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries. ACS Applied Materials & Interfaces, 2019, 11, 44352-44359.	4.0	62
20	Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano, 2019, 13, 10631-10642.	7.3	98
21	Nature of Bimetallic Oxide Sb ₂ MoO ₆ /rGO Anode for Highâ€Performance Potassiumâ€lon Batteries. Advanced Science, 2019, 6, 1900904.	5.6	60
22	Control of SEI Formation for Stable Potassium-Ion Battery Anodes by Bi-MOF-Derived Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 22474-22480.	4.0	117
23	Graphite Anode for a Potassiumâ€ion Battery with Unprecedented Performance. Angewandte Chemie, 2019, 131, 10610-10615.	1.6	100
24	Graphite Anode for a Potassiumâ€kon Battery with Unprecedented Performance. Angewandte Chemie - International Edition, 2019, 58, 10500-10505.	7.2	504
25	<i>In Situ</i> Alloying Strategy for Exceptional Potassium Ion Batteries. ACS Nano, 2019, 13, 3703-3713.	7.3	194
26	Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chemical Communications, 2019, 55, 12511-12514.	2.2	90
27	Fluorine atom-inducing graphene oxide in situ coating SnPO composites as anode for sodium ion batteries. Materials Today Energy, 2019, 11, 174-181.	2.5	10
28	Confined and covalent sulfur for stable room temperature potassium-sulfur battery. Electrochimica Acta, 2019, 293, 191-198.	2.6	68
29	Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15751-15759.	4.0	43
30	A Nonaqueous Potassiumâ€Based Battery–Supercapacitor Hybrid Device. Advanced Materials, 2018, 30, e1800804.	11.1	345
31	Low Cost and Superior Safety Industrial Grade Lithium Dualâ€Ion Batteries with a Second Life. Energy Technology, 2018, 6, 1994-2000.	1.8	29
32	An Ultrafast Rechargeable Hybrid Sodiumâ€Based Dualâ€Ion Capacitor Based on Hard Carbon Cathodes. Advanced Energy Materials, 2018, 8, 1800140.	10.2	129
33	Ultrathin Honeycomb-like Carbon as Sulfur Host Cathode for High Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 7076-7084.	2.5	17
34	Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chemical Communications, 2018, 54, 11773-11776.	2.2	97
35	An Ultrafast and Highly Stable Potassium–Organic Battery. Advanced Materials, 2018, 30, e1805486.	11.1	255
36	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Materials, 2018, 15, 361-367.	9.5	73

#	Article	IF	CITATIONS
37	Ultrastable Potassium Storage Performance Realized by Highly Effective Solid Electrolyte Interphase Layer. Small, 2018, 14, e1801806.	5.2	175
38	Simultaneous Suppression of the Dendrite Formation and Shuttle Effect in a Lithium–Sulfur Battery by Bilateral Solid Electrolyte Interface. Advanced Science, 2018, 5, 1700934.	5.6	70
39	TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochimica Acta, 2018, 284, 314-320.	2.6	61
40	MoSe ₂ /Nâ€Doped Carbon as Anodes for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801477.	10.2	391
41	An Organic Cathode for Potassium Dual-Ion Full Battery. ACS Energy Letters, 2017, 2, 1614-1620.	8.8	216
42	Potassiumâ€Based Dual Ion Battery with Dualâ€Graphite Electrode. Small, 2017, 13, 1701011.	5.2	166
43	Double quantum dots decorated 3D graphene flowers for highly efficient photoelectrocatalytic hydrogen production. Applied Surface Science, 2017, 422, 528-535.	3.1	25
44	Benzodichalcogenophene-diketopyrrolopyrrole small molecules as donors for efficient solution processable solar cells. Chemical Physics, 2017, 493, 77-84.	0.9	9
45	100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode. Energy Storage Materials, 2017, 8, 20-27.	9.5	58
46	Soft Carbon as Anode for Highâ€Performance Sodiumâ€Based Dual Ion Full Battery. Advanced Energy Materials, 2017, 7, 1602778.	10.2	255
47	Freestanding flexible Ni12P5 in bacteria based carbon @ reduced graphene oxides paper for lithium-ion anode. Materials Letters, 2017, 207, 153-156.	1.3	11
48	Core–Shell Ge@Graphene@TiO ₂ Nanofibers as a High apacity and Cycle‧table Anode for Lithium and Sodium Ion Battery. Advanced Functional Materials, 2016, 26, 1104-1111.	7.8	265
49	Reactive Oxygenâ€Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries. Small, 2016, 12, 2783-2791.	5.2	102
50	Battery Anodes: Core–Shell Ge@Graphene@TiO ₂ Nanofibers as a High apacity and Cycleâ€6table Anode for Lithium and Sodium Ion Battery (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 1143-1143.	7.8	12
51	NiO and CrO 3 double surface-decorate Ni nanofibers for hydrogen evolution reduction. Materials Letters, 2016, 182, 15-18.	1.3	16
52	Bacteria Absorption-Based Mn ₂ P ₂ O ₇ –Carbon@Reduced Graphene Oxides for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 5516-5524.	7.3	81
53	Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy, 2016, 28, 304-310.	8.2	164
54	Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries. Electrochimica Acta, 2016, 196, 125-130.	2.6	63

#	Article	IF	CITATIONS
55	Efficient organic photovoltaics using solution-processed, annealing-free TiO2 nanocrystalline particles as an interface modification layer. Organic Electronics, 2015, 17, 253-261.	1.4	45
56	Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives. RSC Advances, 2015, 5, 30145-30152.	1.7	10
57	A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes and Pigments, 2015, 113, 458-464.	2.0	18
58	A new two-dimensional donor/acceptor copolymer based on 4,8-bis(2â€2-ethylhexylthiophene)thieno[2,3-f]benzofuran for high-performance polymer solar cells. Journal of Materials Chemistry C, 2014, 2, 5651.	2.7	38
59	Alkyl substituted naphtho[1, 2-b: 5, 6-b′]difuran as a new building block towards efficient polymer solar cells. RSC Advances, 2013, 3, 5366.	1.7	15