Feng Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700041/publications.pdf

Version: 2024-02-01

39 1,863 17 35
papers citations h-index g-index

42 42 42 2896
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dual-Level Knowledge Distillation via Knowledge Alignment and Correlation. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 2425-2435.	11.3	3
2	SACall: A Neural Network Basecaller for Oxford Nanopore Sequencing Data Based on Self-Attention Mechanism. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 614-623.	3.0	14
3	BlockPolish: accurate polishing of long-read assembly via block divide-and-conquer. Briefings in Bioinformatics, 2022, 23, .	6.5	2
4	CatCharger: Deploying In-Motion Wireless Chargers in a Metropolitan Road Network via Categorization and Clustering of Vehicle Traffic. IEEE Internet of Things Journal, 2022, 9, 9525-9541.	8.7	2
5	Predicting the formation of fractionally doped perovskite oxides by a function-confined machine learning method. Communications Materials, 2022, 3, .	6.9	7
6	A Gene Rank Based Approach for Single Cell Similarity Assessment and Clustering. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 431-442.	3.0	12
7	Efficient assembly of nanopore reads via highly accurate and intact error correction. Nature Communications, 2021, 12, 60.	12.8	166
8	A Chi-MIC Based Adaptive Multi-Branch Decision Tree. IEEE Access, 2021, 9, 78962-78972.	4.2	9
9	NeuralPolish: a novel Nanopore polishing method based on alignment matrix construction and orthogonal Bi-GRU Networks. Bioinformatics, 2021, 37, 3120-3127.	4.1	13
10	Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning. Nature Communications, 2021, 12, 5976.	12.8	47
11	Improving de novo Assembly Based on Read Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 177-188.	3.0	19
12	MultiMotifMaker: A Multi-Thread Tool for Identifying DNA Methylation Motifs from Pacbio Reads. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 220-225.	3.0	12
13	Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize. Plant Cell, 2019, 31, 1968-1989.	6.6	63
14	EPGA-SC: A framework for de novo assembly of single-cell sequencing reads. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18, 1-1.	3.0	3
15	DeepSignal: detecting DNA methylation state from Nanopore sequencing reads using deep-learning. Bioinformatics, 2019, 35, 4586-4595.	4.1	158
16	A Novel Method to Efficiently Highlight Nonlinearly Expressed Genes. Frontiers in Genetics, 2019, 10, 1410.	2.3	3
17	Prediction of lncRNA–disease associations based on inductive matrix completion. Bioinformatics, 2018, 34, 3357-3364.	4.1	227
18	BioRank: A Similarity Assessment Method for Single Cell Clustering. , 2018, , .		1

#	Article	IF	CITATIONS
19	N6-Methyladenine DNA modification in Xanthomonas oryzae pv. oryzicola genome. Scientific Reports, 2018, 8, 16272.	3.3	18
20	A Rare De Novo RAI1 Gene Mutation Affecting BDNF-Enhancer-Driven Transcription Activity Associated with Autism and Atypical Smith-Magenis Syndrome Presentation. Biology, 2018, 7, 31.	2.8	14
21	MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods, 2017, 14, 1072-1074.	19.0	357
22	Dynamic Management of In-Memory Storage for Efficiently Integrating Compute-and Data-Intensive Computing on HPC Systems., 2017,,.		1
23	Accelerating big data analytics on HPC clusters using two-level storage. Parallel Computing, 2017, 61, 18-34.	2.1	19
24	Identifying and sequencing a Mycobacterium sp. strain F4 as a potential bioremediation agent for quinclorac. PLoS ONE, 2017, 12, e0185721.	2.5	6
25	A New Algorithm to Optimize Maximal Information Coefficient. PLoS ONE, 2016, 11, e0157567.	2.5	20
26	Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans. Scientific Reports, 2015, 5, 15778.	3.3	18
27	Genome-Wide Comparative Analysis Reveals Similar Types of NBS Genes in Hybrid Citrus sinensis Genome and Original Citrus clementine Genome and Provides New Insights into Non-TIR NBS Genes. PLoS ONE, 2015, 10, e0121893.	2.5	9
28	Predicting protein phosphorylation from gene expression: top methods from the IMPROVER Species Translation Challenge. Bioinformatics, 2015, 31, 462-470.	4.1	14
29	Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3. PLoS ONE, 2014, 9, e108012.	2.5	26
30	A quantitative structure–activity relationship (QSAR) study on glycan array data to determine the specificities of glycan-binding proteins. Glycobiology, 2012, 22, 552-560.	2.5	22
31	Predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using short polypeptide clusters. Proteome Science, 2012, 10, S4.	1.7	3
32	Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions. BMC Systems Biology, 2011, 5, 73.	3.0	12
33	Identifying differentially expressed genes in cancer patients using a nonâ€parameter Ising model. Proteomics, 2011, 11, 3845-3852.	2.2	6
34	Core and periphery structures in protein interaction networks. BMC Bioinformatics, 2009, 10, S8.	2.6	36
35	Modular organization of protein interaction networks. Bioinformatics, 2007, 23, 207-214.	4.1	151
36	Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics, 2007, 8, 299.	2.6	221

FENG Luo

#	Article	IF	CITATIONS
37	Exploring Local Community Structures in Large Networks. , 2006, , .		63
38	Detecting Functional Modules from Protein Interaction Networks. , 2006, , .		1
39	Application of random matrix theory to microarray data for discovering functional gene modules. Physical Review E, 2006, 73, 031924.	2.1	63