Makio Yokono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4700027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7283-7288.	7.1	123
2	Live-cell imaging of photosystem II antenna dissociation during state transitions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2337-2342.	7.1	119
3	Identification of a Novel Vinyl Reductase Gene Essential for the Biosynthesis of Monovinyl Chlorophyll in Synechocystis sp. PCC6803. Journal of Biological Chemistry, 2008, 283, 9002-9011.	3.4	78
4	Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1483-1489.	1.0	76
5	Identification of the primary electron donor in PS II of the Chl d -dominated cyanobacterium Acaryochloris marina. FEBS Letters, 2004, 556, 95-98.	2.8	67
6	Excitation energy transfer between photosystem II and photosystem I in red algae: Larger amounts of phycobilisome enhance spillover. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 847-853.	1.0	63
7	Deregulated Chlorophyll b Synthesis Reduces the Energy Transfer Rate Between Photosynthetic Pigments and Induces Photodamage in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 1055-1065.	3.1	61
8	Delayed fluorescence observed in the nanosecond time region at 77ÂK originates directly from the photosystem II reaction center. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 327-334.	1.0	59
9	High Excitation Energy Quenching in Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Protein Complexes from the Diatom Chaetoceros gracilis. Journal of Physical Chemistry B, 2013, 117, 6888-6895.	2.6	56
10	Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 55-65.	1.0	50
11	Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy. Nature Communications, 2019, 10, 4929.	12.8	50
12	LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3722-3727.	7.1	45
13	Excitation relaxation dynamics and energy transfer in fucoxanthin–chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1514-1521.	1.0	41
14	Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2019, 294, 4304-4314.	3.4	40
15	Variations in Photosystem I Properties in the Primordial Cyanobacterium <i>GloeobacterÂviolaceus</i> PCC 7421. Photochemistry and Photobiology, 2010, 86, 62-69.	2.5	39
16	Light-Harvesting Ability of the Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Protein Associated with Photosystem II from the Diatom <i>Chaetoceros gracilis</i> As Revealed by Picosecond Time-Resolved Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 5093-5100.	2.6	38
17	Visualizing structural dynamics of thylakoid membranes. Scientific Reports, 2015, 4, 3768.	3.3	35
18	The PSI–PSII Megacomplex in Green Plants. Plant and Cell Physiology, 2019, 60, 1098-1108.	3.1	34

ΜΑΚΙΟ ΥΟΚΟΝΟ

#	Article	IF	CITATIONS
19	Ultrafast Excitation Relaxation Dynamics of Lutein in Solution and in the Light-Harvesting Complexes II Isolated from Arabidopsis thaliana. Journal of Physical Chemistry B, 2005, 109, 12612-12619.	2.6	33
20	Fluorescence lifetime analyses reveal how the high light–responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state. Journal of Biological Chemistry, 2017, 292, 18951-18960.	3.4	32
21	Specific Gene bciD for C7-Methyl Oxidation in Bacteriochlorophyll e Biosynthesis of Brown-Colored Green Sulfur Bacteria. PLoS ONE, 2013, 8, e60026.	2.5	31
22	Control Mechanism of Excitation Energy Transfer in a Complex Consisting of Photosystem II and Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> Binding Protein. Journal of Physical Chemistry Letters, 2014, 5, 2983-2987.	4.6	30
23	Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins. Communications Biology, 2020, 3, 232.	4.4	30
24	Regulation of excitation energy transfer in diatom PSII dimer: How does it change the destination of excitation energy?. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1274-1282.	1.0	29
25	Towards artificial methanogenesis: biosynthesis of the [Fe]-hydrogenase cofactor and characterization of the semi-synthetic hydrogenase. Faraday Discussions, 2017, 198, 37-58.	3.2	29
26	Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochemical and Photobiological Sciences, 2008, 7, 1206-1209.	2.9	26
27	Chlorophyllide a Oxidoreductase Works as One of the Divinyl Reductases Specifically Involved in Bacteriochlorophyll a Biosynthesis. Journal of Biological Chemistry, 2014, 289, 12716-12726.	3.4	26
28	Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. Nature Plants, 2015, 1, 14008.	9.3	26
29	Mgâ€dechelatase is involved in the formation of photosystem <scp>II</scp> but not in chlorophyll degradation in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2019, 97, 1022-1031.	5.7	25
30	New linker proteins in phycobilisomes isolated from the cyanobacteriumGloeobacter violaceusPCC 7421. FEBS Letters, 2006, 580, 3457-3461.	2.8	23
31	Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynthesis Research, 2013, 117, 235-243.	2.9	23
32	Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: How does it divert excess energy from photosynthetic reaction center?. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 379-387.	1.0	22
33	Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Current Opinion in Plant Biology, 2017, 37, 94-101.	7.1	21
34	A Monogalactosyldiacylglycerol Synthase Found in the Green Sulfur Bacterium Chlorobaculum tepidum Reveals Important Roles for Galactolipids in Photosynthesis. Plant Cell, 2011, 23, 2644-2658.	6.6	20
35	Low-Energy Chlorophylls in Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Protein Conduct Excitation Energy Transfer to Photosystem I in Diatoms. Journal of Physical Chemistry B, 2019, 123, 66-70.	2.6	20
36	Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Photosynthesis Research, 2020, 146, 227-234.	2.9	19

ΜΑΚΙΟ ΥΟΚΟΝΟ

#	Article	IF	CITATIONS
37	Excitation energy relaxation in a symbiotic cyanobacterium, Prochloron didemni, occurring in coral-reef ascidians, and in a free-living cyanobacterium, Prochlorothrix hollandica. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1992-1997.	1.0	18
38	Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Scientific Reports, 2016, 6, 29940.	3.3	18
39	Alterations of pigment composition and their interactions in response to different light conditions in the diatom Chaetoceros gracilis probed by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 524-530.	1.0	18
40	Comparative analyses of whole-genome protein sequences from multiple organisms. Scientific Reports, 2018, 8, 6800.	3.3	18
41	Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 754-759.	1.0	17
42	Energy transfer and distribution in photosystem super/megacomplexes of plants. Current Opinion in Biotechnology, 2018, 54, 50-56.	6.6	17
43	Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Photosynthesis Research, 2019, 141, 355-365.	2.9	17
44	Excitation-Energy Transfer and Quenching in Diatom PSI-FCPI upon P700 Cation Formation. Journal of Physical Chemistry B, 2020, 124, 1481-1486.	2.6	17
45	Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex. Nature Communications, 2022, 13, 1764.	12.8	17
46	Fluorescence properties of the chlorophyll d-dominated cyanobacterium Acaryochloris sp. strain Awaji. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 122-129.	3.9	16
47	Deficiency of the Stroma-Lamellar Protein LIL8/PSB33 Affects Energy Transfer Around PSI in Arabidopsis. Plant and Cell Physiology, 2017, 58, 2026-2039.	3.1	16
48	Excitation energy transfer in the antenna system with divinyl-chlorophylls in the vinyl reductase-expressing Arabidopsis. Chemical Physics Letters, 2005, 409, 167-171.	2.6	15
49	Formation of a PSI–PSII megacomplex containing LHCSR and PsbS in the moss Physcomitrella patens. Journal of Plant Research, 2019, 132, 867-880.	2.4	14
50	Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. ELife, 2022, 11, .	6.0	14
51	Molecular environments of divinyl chlorophylls in Prochlorococcus and Synechocystis: Differences in fluorescence properties with chlorophyll replacement. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 471-481.	1.0	13
52	Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy. Plant Physiology and Biochemistry, 2014, 81, 149-154.	5.8	13
53	Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynthesis Research, 2018, 136, 49-61.	2.9	13
54	pH-Sensing Machinery of Excitation Energy Transfer in Diatom PSI–FCPI Complexes. Journal of Physical Chemistry Letters, 2019, 10, 3531-3535.	4.6	12

ΜΑΚΙΟ ΥΟΚΟΝΟ

#	Article	IF	CITATIONS
55	pH-Induced Regulation of Excitation Energy Transfer in the Cyanobacterial Photosystem I Tetramer. Journal of Physical Chemistry B, 2020, 124, 1949-1954.	2.6	12
56	Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Proteins. Journal of Physical Chemistry B, 2020, 124, 4919-4923.	2.6	11
57	Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa. Nature Communications, 2022, 13, 1679.	12.8	11
58	Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148350.	1.0	10
59	Stabilization and modulation of the phycobilisome by calcium in the calciphilic freshwater red alga Bangia atropurpurea. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 306-311.	1.0	9
60	Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. Photosynthesis Research, 2020, 146, 87-93.	2.9	8
61	Molecular organizations and function of iron-stress-induced-A protein family in Anabaena sp. PCC 7120. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148327.	1.0	8
62	Clathrate-like Ordering in Liquid Water Induced by Infrared Irradiation. Japanese Journal of Applied Physics, 2004, 43, L1436-L1438.	1.5	7
63	Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Photosynthesis Research, 2020, 146, 143-150.	2.9	7
64	Effect of Sunlight on Liquid Structure of Water. Japanese Journal of Applied Physics, 2007, 46, 333-335.	1.5	6
65	Differences in excitation energy transfer of Arthrospira platensis cells grown in seawater medium and freshwater medium, probed by time-resolved fluorescence spectroscopy. Chemical Physics Letters, 2013, 588, 231-236.	2.6	5
66	Toward understanding the multiple spatiotemporal dynamics of chlorophyll fluorescence. Plant Signaling and Behavior, 2015, 10, e1022014.	2.4	5
67	High-light modification of excitation-energy-relaxation processes in the green flagellate Euglena gracilis. Photosynthesis Research, 2021, 149, 303-311.	2.9	4
68	How Light-Harvesting and Energy-Transfer Processes Are Modified Under Different Light Conditions: STUDIES by Time-Resolved Fluorescence Spectroscopy. , 2017, , 169-184.		3
69	Substitution of Deoxycholate with the Amphiphilic Polymer Amphipol A8-35 Improves the Stability of Large Protein Complexes during Native Electrophoresis. Plant and Cell Physiology, 2021, 62, 348-355.	3.1	3
70	Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media. Photosynthesis Research, 2015, 125, 201-210.	2.9	2
71	Regulation of excitation energy in Nannochloropsis photosystem II. Photosynthesis Research, 2019, 139, 155-161.	2.9	2
72	Basic pH-induced modification of excitation-energy dynamics in fucoxanthin chlorophyll a/c-binding proteins isolated from a pinguiophyte, Glossomastix chrysoplasta. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148306.	1.0	1

#	Article	IF	CITATIONS
73	Simulation of Excitation Energy Transfer within the PSI-LHCI/II Supercomplex from Chlamydomonas reinhardtii. , 2008, , 1027-1030.		1
74	Excitation-energy transfer in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120 as studied by time-resolved fluorescence spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2022, 1863, 148509.	1.0	1
75	Modification of Energy Distribution Between Photosystems I and II by Spillover Revealed byÂTime-Resolved Fluorescence Spectroscopy. Advances in Photosynthesis and Respiration, 2021, , 277-302.	1.0	0
76	Ultrafast Relaxation Dynamics of a Keto-Carotenoid, Siphonaxanthin, Probed by Time-Resolved Fluorescence. , 2008, , 319-322.		0
77	Reply to "Comment on â€~Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll <i>a</i> / <i>c</i> -Binding Proteins'― Journal of Physical Chemistry B, 2020, 124, 10588-10589.	2.6	0