Craig Liddicoat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4699816/publications.pdf

Version: 2024-02-01

516215 580395 28 664 16 25 citations h-index g-index papers 31 31 31 719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A practical guide for restoration ecologists to manage microbial contamination risks before laboratory processes during microbiota restoration studies. Restoration Ecology, 2023, 31, .	1.4	3
2	Soil <scp>DNA</scp> chronosequence analysis shows bacterial community reâ€assembly following postâ€mining forest rehabilitation. Restoration Ecology, 2023, 31, .	1.4	3
3	Does revegetation cause soil microbiota recovery? Evidence from revisiting a revegetation chronosequence 6 years after initial sampling. Restoration Ecology, 2022, 30, .	1.4	8
4	Next generation restoration metrics: Using soil eDNA bacterial community data to measure trajectories towards rehabilitation targets. Journal of Environmental Management, 2022, 310, 114748.	3.8	14
5	Gut microbiota composition does not associate with <i>toxoplasma</i> infection in rats. Molecular Ecology, 2022, 31, 3963-3970.	2.0	5
6	Global meta-analysis shows progress towards recovery of soil microbiota following revegetation. Biological Conservation, 2022, 272, 109592.	1.9	5
7	Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environmental Research, 2021, 196, 110425.	3.7	28
8	Digital soil mapping and assessment for Australia and beyond: A propitious future. Geoderma Regional, 2021, 24, e00359.	0.9	29
9	A guide to minimize contamination issues in microbiome restoration studies. Restoration Ecology, 2021, 29, e13358.	1.4	6
10	Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Scientific Reports, 2021, 11, 9516.	1.6	31
11	Outdoor artificial light at night: A forgotten factor in green space and health research. Environmental Research, 2021, 197, 111012.	3.7	17
12	The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Science of the Total Environment, 2021, 777, 146063.	3.9	35
13	Is outdoor artificial light at night confounding studies on green space and health?. ISEE Conference Abstracts, 2021, 2021, .	0.0	О
14	Microbiome-Inspired Green Infrastructure: a bioscience roadmap for urban ecosystem health. Architectural Research Quarterly, 2021, 25, 292-303.	0.1	4
15	Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of the Total Environment, 2020, 701, 134684.	3.9	98
16	Operationalising digital soil mapping – Lessons from Australia. Geoderma Regional, 2020, 23, e00335.	0.9	21
17	Vertical Stratification in Urban Green Space Aerobiomes. Environmental Health Perspectives, 2020, 128, 117008.	2.8	35
18	Digital soil assessment delivers impact across scales in Australia and the Philippines. Geoderma Regional, 2020, 22, e00314.	0.9	4

#	Article	IF	CITATIONS
19	Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 2020, 47, 100939.	0.7	20
20	Soil Security for Australia. Sustainability, 2019, 11, 3416.	1.6	31
21	Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health?. Environment International, 2019, 129, 105-117.	4.8	50
22	Relating Urban Biodiversity to Human Health With the †Holobiont†M Concept. Frontiers in Microbiology, 2019, 10, 550.	1.5	64
23	Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia. Science of the Total Environment, 2018, 626, 117-125.	3.9	25
24	Landscape biodiversity correlates with respiratory health in Australia. Journal of Environmental Management, 2018, 206, 113-122.	3.8	50
25	Harnessing the Hidden Powers of Our Natural Allies. BioScience, 2017, 67, 1063-1065.	2.2	O
26	Environmental Change and Human Health: Can Environmental Proxies Inform the Biodiversity Hypothesis for Protective Microbial–Human Contact?. BioScience, 2016, 66, 1023-1034.	2.2	21
27	Derivation of soil-attribute estimations from legacy soil maps. Soil Research, 2015, 53, 881.	0.6	17
28	Predictive mapping of soil organic carbon stocks in South Australia's agricultural zone. Soil Research, 2015, 53, 956.	0.6	36