
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4699657/publications.pdf Version: 2024-02-01

ΙΙΑ ΗΟΝΟ ΡΑΝ

#	Article	IF	CITATIONS
1	Current Progress and Future Perspectives of Electrolytes for Rechargeable Aluminumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	20
2	Photocatalysis for environmental remediation - From laboratories to industry and beyond. Chemosphere, 2022, 286, 131704.	4.2	6
3	Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine. Cellulose, 2022, 29, 1189-1204.	2.4	12
4	Research progress of atomic layer deposition technology to improve the long-term stability of perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 819-839.	2.7	13
5	Visualizing crystal structure evolution of electrode materials upon doping and during charge/discharge cycles in lithium-ion batteries. STAR Protocols, 2022, 3, 101099.	0.5	1
6	Microwave-assisted self-template synthesis of mesoporous anatase TiO2 spheres for non-aqueous Al-ion batteries: Textural property optimization and enhanced reversible Al3+ storage. Sustainable Materials and Technologies, 2022, 32, e00419.	1.7	7
7	Molluscicidal and biochemical effects of green-synthesized F-doped ZnO nanoparticles against land snail Monacha cartusiana under laboratory and field conditions. Environmental Pollution, 2022, 308, 119691.	3.7	6
8	Concurrent Ce doping and in-situ carbon coating of Li2MnSiO4 nanoparticles with enhanced capacity via a rapid microwave-assisted sol-gel proces. Scripta Materialia, 2021, 193, 122-126.	2.6	7
9	Mesoporous WO3/TiO2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. Chemosphere, 2021, 263, 128344.	4.2	52
10	Innovative utilization of molecular imprinting technology for selective adsorption and (photo)catalytic eradication of organic pollutants. Chemosphere, 2021, 265, 129077.	4.2	27
11	Robust lithium storage of block copolymer-templated mesoporous TiNb2O7 and TiNb2O7@C anodes evaluated in half-cell and full-battery configurations. Electrochimica Acta, 2021, 379, 138179.	2.6	33
12	Novel green synthesis of S-doped TiO2 nanoparticles using Malva parviflora plant extract and their photocatalytic, antimicrobial and antioxidant activities under sunlight illumination. Chemosphere, 2021, 271, 129524.	4.2	62
13	Unveiling the Formation Mechanism and Phase Purity Control of Nanostructured Li4Ti5O12 via a Hydrothermal Process. Crystal Growth and Design, 2021, 21, 5440-5450.	1.4	4
14	Solid-state self-template synthesis of Ta-doped Li2ZnTi3O8 spheres for efficient and durable lithium storage. IScience, 2021, 24, 102991.	1.9	6
15	Controllable synthesis and self-template phase transition of hydrous TiO2 colloidal spheres for photo/electrochemical applications. Advances in Colloid and Interface Science, 2021, 295, 102493.	7.0	27
16	Bi ₂ Se ₃ , Bi ₂ Te ₃ quantum dots-sensitized rutile TiO ₂ nanorod arrays for enhanced solar photoelectrocatalysis in azo dye degradation. JPhys Energy, 2021, 3, 014003.	2.3	17
17	Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science, 2020, 109, 100620.	16.0	100
18	Hole transport layers based on metal Schiff base complexes in perovskite solar cells. Synthetic Metals, 2020, 259, 116248.	2.1	9

#	Article	IF	CITATIONS
19	Structurally Reinforced Allâ€Inorganic CsPbI ₂ Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds. Solar Rrl, 2020, 4, 2000216.	3.1	34
20	Controllable Synthesis and Crystallization of Nanoporous TiO ₂ Deep-Submicrospheres and Nanospheres via an Organic Acid-Mediated Solâ^'Gel Process. Langmuir, 2020, 36, 7447-7455.	1.6	15
21	Ultraviolet-Induced Interfacial Crystallization of Uniform Nanoporous Biphasic TiO ₂ Spheres for Durable Lithium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 4186-4192.	2.5	27
22	<i>In situ</i> synthesis of N–CoMe2Pc/rGO nanocomposite with enhanced photocatalytic activity and stability in Cr(VI) reduction. Journal of Chemical Physics, 2020, 152, 154702.	1.2	7
23	Tunable Hierarchical Nanostructures on Micro-Conical Arrays of Laser Textured TC4 Substrate by Hydrothermal Treatment for Enhanced Anti-Icing Property. Coatings, 2020, 10, 450.	1.2	12
24	Dopantâ€Free Holeâ€Transporting Layer Based on Isomerâ€Pure Tetraâ€Butylâ€Substituted Zinc(II) Phthalocyanine for Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900119.	3.1	12
25	Annealing temperature-dependent electrochemical properties of Aeroxide P25 TiO2 nanoparticles as anode material for lithium storage. Progress in Natural Science: Materials International, 2019, 29, 679-684.	1.8	12
26	PVP-assisted laser ablation growth of Ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Progress in Natural Science: Materials International, 2019, 29, 660-666.	1.8	14
27	Revisiting structural and photocatalytic properties of g-C3N4/TiO2: Is surface modification of TiO2 by calcination with urea an effective route to "solar―photocatalyst?. Catalysis Today, 2019, 335, 252-261.	2.2	42
28	P3HT/Phthalocyanine Nanocomposites as Efficient Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800264.	3.1	47
29	Photochemical Conversion and Storage of Solar Energy. ACS Energy Letters, 2019, 4, 405-410.	8.8	25
30	Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 2019, 335, 78-90.	2.2	350
31	Decorating (001) dominant anatase TiO2 nanoflakes array with uniform WO3 clusters for enhanced photoelectrochemical water decontamination. Catalysis Today, 2019, 335, 365-371.	2.2	21
32	Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles?. Catalysis Today, 2018, 300, 12-17.	2.2	147
33	Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering C, 2018, 92, 1075-1091.	3.8	83
34	Dopantâ€Free Hole Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800200.	3.1	86
35	Shape-controlled synthesis of single-crystalline anatase TiO ₂ micro/nanoarchitectures for efficient dye-sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 520-528.	2.5	14
36	Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017, 202, 33-41.	10.8	155

#	Article	IF	CITATIONS
37	Continuous Synthesis of Ag/TiO ₂ Nanoparticles with Enhanced Photocatalytic Activity by Pulsed Laser Ablation. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	30
38	A Facile Chemicalâ€Free and Universal Method for Transfer of Ultrathin Grapheneâ€Based Films. Advanced Materials Interfaces, 2016, 3, 1600540.	1.9	2
39	Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 19410-19417.	4.0	55
40	Significantly Enhanced Separation using ZIFâ€8 Membranes by Partial Conversion of Calcined Layered Double Hydroxide Precursors. ChemSusChem, 2015, 8, 3582-3586.	3.6	44
41	Remarkably Enhanced Gas Separation by Partial Selfâ€Conversion of a Laminated Membrane to Metal–Organic Frameworks. Angewandte Chemie, 2015, 127, 3071-3075.	1.6	43
42	Remarkably Enhanced Gas Separation by Partial Selfâ€Conversion of a Laminated Membrane to Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3028-3032.	7.2	125
43	Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14859-14869.	4.0	62
44	Reconstruction of Colloidal Spheres by Targeted Etching: A Generalized Self-Template Route to Porous Amphoteric Metal Oxide Hollow Spheres. Langmuir, 2015, 31, 4566-4572.	1.6	16
45	One-Dimensional Nanostructured TiO _{2} for Photocatalytic Degradation of Organic Pollutants in Wastewater. International Journal of Photoenergy, 2014, 2014, 1-14.	1.4	36
46	Solar Energy Conversion by Nanostructured TiO2. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	3
47	Hydrous TiO2 spheres: An excellent platform for the rational design of mesoporous anatase spheres for photoelectrochemical applications. Catalysis Today, 2014, 230, 197-204.	2.2	34
48	Largeâ€scale Synthesis of Urchinâ€like Mesoporous TiO ₂ Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties. Advanced Functional Materials, 2014, 24, 95-104.	7.8	204
49	A benzothiazole–cyclopentadithiophene bridged D–A–π–A sensitizer with enhanced light absorption for high efficiency dye-sensitized solar cells. Chemical Communications, 2014, 50, 3965-3968.	2.2	69
50	<i>In Situ</i> Synthesis of MOF Membranes on ZnAl-CO ₃ LDH Buffer Layer-Modified Substrates. Journal of the American Chemical Society, 2014, 136, 14353-14356.	6.6	189
51	Scalable Synthesis of Urchin- and Flowerlike Hierarchical NiO Microspheres and Their Electrochemical Property for Lithium Storage. ACS Applied Materials & Interfaces, 2013, 5, 6292-6299.	4.0	142
52	Mesoporous TiO ₂ photocatalytic films on stainless steel for water decontamination. Catalysis Science and Technology, 2012, 2, 147-155.	2.1	39
53	A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Physical Chemistry Chemical Physics, 2012, 14, 7481.	1.3	52
54	CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. Journal of Materials Chemistry, 2012, 22, 16235.	6.7	140

#	Article	IF	CITATIONS
55	Hierarchical assembly of anatase nanowhiskers and evaluation of their photocatalytic efficiency in comparison to various one-dimensional TiO2 nanostructures. Journal of Materials Chemistry, 2011, 21, 11844.	6.7	42
56	Controllable synthesis of mesoporous F–TiO2 spheres for effective photocatalysis. Journal of Materials Chemistry, 2011, 21, 11430.	6.7	115
57	Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets. Chemical Communications, 2011, 47, 6942.	2.2	108
58	Sol–gel synthesis, microstructure and adsorption properties of hollow silica spheres. Materials Letters, 2011, 65, 1811-1814.	1.3	21
59	Preparation of periodically organized mesoporous bicomponent TiO2 and SnO2-based thin films by controlling the hydrolytic kinetics of inorganic precursors during EISA process. Materials Letters, 2011, 65, 2836-2840.	1.3	5
60	Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chemical Engineering Journal, 2011, 170, 363-380.	6.6	130
61	Effect of Calcination Temperature on the Textural Properties and Photocatalytic Activities of Highly Ordered Cubic Mesoporous WO ₃ /TiO ₂ Films. Journal of Nanoscience and Nanotechnology, 2010, 10, 4747-4751.	0.9	8
62	Porous photocatalysts for advanced water purifications. Journal of Materials Chemistry, 2010, 20, 4512.	6.7	311
63	Transformation of Bromine Species in TiO ₂ Photocatalytic System. Environmental Science & Technology, 2010, 44, 439-444.	4.6	64
64	Synthesis of mesoporous anatase TiO2 with a combined template method and photocatalysis. CrystEngComm, 2010, 12, 3455.	1.3	41
65	Combination of nano TiO2 photocatalytic oxidation with microfiltration (MF) for natural organic matter removal. Water Science and Technology: Water Supply, 2009, 9, 31-37.	1.0	26
66	Fabrication and photocatalytic activity of porous TiO2 nanowire microspheres by surfactant-mediated spray drying process. Materials Research Bulletin, 2009, 44, 1070-1076.	2.7	32
67	Room-temperature fabrication of anatase TiO2 submicrospheres with nanothornlike shell for photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204, 154-160.	2.0	19
68	TiO2 nanotube photocatalytic oxidation for water treatment. Water Science and Technology: Water Supply, 2009, 9, 45-49.	1.0	14
69	Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment. Water Research, 2009, 43, 1179-1186.	5.3	109
70	Self-Etching Reconstruction of Hierarchically Mesoporous F-TiO ₂ Hollow Microspherical Photocatalyst for Concurrent Membrane Water Purifications. Journal of the American Chemical Society, 2008, 130, 11256-11257.	6.6	407
71	Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO ₂ Thin Film. Langmuir, 2008, 24, 13225-13230.	1.6	88
72	Aggregating TiO2 (B) Nanowires to Porous Basketry-like Microspheres and Their Photocatalytic Properties. Chemistry Letters, 2008, 37, 424-425.	0.7	17

#	Article	IF	CITATIONS
73	Synthesis of the mesoporous TiO2 films and their application to dye-sensitized solar cells. Studies in Surface Science and Catalysis, 2007, 165, 625-628.	1.5	6
74	Controlled Formation of Highly Crystallized Cubic and Hexagonal Mesoporous SnO2Thin Films. Journal of Physical Chemistry C, 2007, 111, 5582-5587.	1.5	43
75	Nickel oxyhydroxides with various oxidation states prepared by chemical oxidation of spherical β-Ni(OH)2. Solid State Ionics, 2007, 178, 987-993.	1.3	58
76	Preparation of Highly Ordered Cubic Mesoporous WO3/TiO2Films and Their Photocatalytic Properties. Chemistry of Materials, 2006, 18, 847-853.	3.2	266
77	Electrochromic property of the viologen-anchored mesoporous TiO2 films. Journal of Electroceramics, 2006, 17, 929-932.	0.8	26
78	Photocatalytic Properties of Mesoporous TiO ₂ Films Derived from Evaporation-Induced Self-Assembly Method. Materials Science Forum, 2006, 510-511, 58-61.	0.3	7
79	Selective control of cubic and hexagonal mesophases for titania and silica thin films with spin-coating. New Journal of Chemistry, 2005, 29, 841.	1.4	40
80	Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating. Bulletin of the Korean Chemical Society, 2005, 26, 418-422.	1.0	8