
Alexander Gabay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4699533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure and Hard Magnetic Properties of Sm _{1-<i> x </i>} Zr _{<i> x </i>} (Fe,Co) _{11.3-<i> y </i>} Ti _{0.7} B _{<i> y </i>} Ingots and Thick Melt-Spun Ribbons. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	3
2	Effect of alloying with Sc, Nb and Zr on reduction-diffusion synthesis of magnetically hard Sm(Fe,Co,Ti)12-based monocrystalline powders. Journal of Magnetism and Magnetic Materials, 2022, 541, 168550.	2.3	9
3	High-coercivity ThMn12-type monocrystalline Sm–Zr–Fe–Co–Ti particles by high-temperature reduction diffusion. Scripta Materialia, 2021, 196, 113760.	5.2	21
4	lsotropic nanocrystalline Sm(Fe,Co)11.3Ti0.7 magnets modified with B and Zr. Journal of Magnetism and Magnetic Materials, 2021, 529, 167867.	2.3	12
5	ThMn12-Type Alloys for Permanent Magnets. Engineering, 2020, 6, 141-147.	6.7	49
6	New anisotropic MnBi permanent magnets by field-annealing of compacted melt-spun alloys modified with Mg and Sb. Journal of Magnetism and Magnetic Materials, 2020, 495, 165860.	2.3	35
7	Development of rare-earth-free bulk magnets with energy product up to 12 MGOe in field annealed Mn–Bi–Mg–In–Sb alloys. Journal of Alloys and Compounds, 2020, 822, 153663.	5.5	14
8	MnBi-based magnets prepared from melt-spun alloys: Effect of αÂ→Âβ phase transformation during field annealing. Journal of Magnetism and Magnetic Materials, 2020, 516, 167340.	2.3	5
9	Effect of Mg Content in Melt-Spun Mn–Bi–Mg–Sb–In Alloys on the Structure and Properties of Field-Annealed Magnets. IEEE Magnetics Letters, 2020, 11, 1-4.	1.1	3
10	Semi-hard magnetic nanocomposites based on out-of-equilibrium Fe2+ÎNb and Fe2+ÎTa Laves phases. AIP Advances, 2019, 9, 035143.	1.3	5
11	The Sm-Fe-V based 1:12 bulk magnets. Journal of Alloys and Compounds, 2019, 791, 1122-1127.	5.5	28
12	Effect of Sb substitution on crystal structure, texture and hard magnetic properties of melt-spun MnBi alloys. Journal of Alloys and Compounds, 2019, 792, 77-86.	5.5	18
13	Assessment of off-stoichiometric Zr33-xFe52+xSi15 C14 Laves phase compounds as permanent magnet materials. AIP Advances, 2018, 8, 056204.	1.3	3
14	Synthesis and processing effects on magnetic properties in the Fe5SiB2 system. Journal of Alloys and Compounds, 2018, 731, 995-1000.	5.5	8
15	Preparation of highly pure α-MnBi phase via melt-spinning. AIP Advances, 2018, 8, .	1.3	19
16	Recent developments in RFe12-type compounds for permanent magnets. Scripta Materialia, 2018, 154, 284-288.	5.2	71
17	Infiltration of Die-Upset Nd-Fe-B Magnets With Mischmetal Eutectic Alloys. IEEE Magnetics Letters, 2018, 9, 1-5.	1.1	0
18	Current progress and future challenges in rare-earth-free permanent magnets. Acta Materialia, 2018, 158, 118-137.	7.9	351

Alexander Gabay

#	Article	IF	CITATIONS
19	Manufacturing of Die-Upset Rare Earth–Iron–Boron Magnets With (Ce,La)-Mischmetal. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	6
20	CaO-matrix processing of MnBi alloys for permanent magnets. AIP Advances, 2017, 7, .	1.3	2
21	Mechanochemical synthesis of magnetically hard anisotropic RFe10Si2 powders with R representing combinations of Sm, Ce and Zr. Journal of Magnetism and Magnetic Materials, 2017, 422, 43-48.	2.3	37
22	Low-cost Ce1- <i>x</i> Sm <i>x</i> (Fe, Co, Ti)12 alloys for permanent magnets. AIP Advances, 2016, 6, .	1.3	35
23	Structure and permanent magnet properties of Zr1-R Fe10Si2 alloys with RÂ=ÂY, La, Ce, Pr and Sm. Journal of Alloys and Compounds, 2016, 683, 271-275.	5.5	30
24	ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1â^'Ce Fe10Si2 alloys. Journal of Alloys and Compounds, 2016, 657, 133-137.	5.5	36
25	Application of Mechanochemical Synthesis to Manufacturing of Permanent Magnets. Jom, 2015, 67, 1329-1335.	1.9	22
26	Fabrication of anisotropic MnBi nanoparticles by mechanochemical process. Journal of Alloys and Compounds, 2014, 586, 349-352.	5.5	39
27	Mechanochemical synthesis of LaCo ₅ magnetically hard anisotropic powder. Journal Physics D: Applied Physics, 2014, 47, 182001.	2.8	12
28	Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry. Journal of Magnetism and Magnetic Materials, 2014, 368, 75-81.	2.3	40
29	Mechanochemical synthesis of fine R2Fe14BHx and R2Fe14B powders with R=Nd or Nd–Dy. Journal of Alloys and Compounds, 2013, 574, 472-476.	5.5	25
30	Mechanochemical Synthesis of (Sm,Pr)\$_{2}\$(Co,Fe)\$_{17}\$ Anisotropic Hard Magnetic Powders. IEEE Transactions on Magnetics, 2013, 49, 3225-3228.	2.1	13
31	Anisotropic fully dense MnBi permanent magnet with high energy product and high coercivity at elevated temperatures. Journal Physics D: Applied Physics, 2013, 46, 062001.	2.8	88
32	Internally Segmented Nd-Fe-B/CaF ₂ Sintered Magnets. IEEE Transactions on Magnetics, 2013, 49, 558-561.	2.1	7
33	Fabrication and Microstructure Evolution of Single Crystalline Sm ₂ Co ₁₇ Nanoparticles Prepared by Mechanochemical Method. Journal of Physical Chemistry C, 2013, 117, 10291-10295.	3.1	28
34	Influence of the type of surfactant and hot compaction on the magnetic properties of SmCo5 nanoflakes. Journal of Applied Physics, 2011, 109, .	2.5	30
35	Dysprosium-saving improvement of coercivity in Nd-Fe-B sintered magnets by Dy2S3 additions. Journal of Applied Physics, 2011, 109, .	2.5	46
36	Rare earth–cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling. Journal of Physics Condensed Matter, 2010, 22, 164213.	1.8	61

Alexander Gabay

#	Article	IF	CITATIONS
37	Indium substituted PrCo5 sintered magnet: A microstructure view. Journal of Applied Physics, 2010, 107, .	2.5	1
38	Anisotropic SmCo5 nanoflakes by surfactant-assisted high energy ball milling. Journal of Applied Physics, 2010, 107, .	2.5	74
39	Fluoride-added Pr–Fe–B die-upset magnets with increased electrical resistivity. Journal of Applied Physics, 2009, 105, 07A711.	2.5	30
40	High performance isotropic Sm–(Co,Fe)–C and Sm–(Co,Fe,Mn)–C magnets by melt spinning. Journal of Applied Physics, 2008, 103, 07E125.	2.5	7
41	Crystal structure of Zr2Co11 hard magnetic compound. Journal of Alloys and Compounds, 2007, 432, 135-141.	5.5	55
42	Enhanced Mr and (BH)max in anisotropic R2Fe14Bâ^•αâ€Fe composite magnets via intergranular magnetostatic coupling. Journal of Applied Physics, 2006, 99, 08B506.	2.5	17
43	Crystallization behavior in two-phase PrFeB mechanically milled powder. , 2005, , .		0
44	Microstructure of nanocomposite R-Fe-B die-upset magnets (R=Pr,Nd) produced from mechanically milled powders. IEEE Transactions on Magnetics, 2005, 41, 3883-3885.	2.1	3
45	Microstructure of nanocomposite R-Fe-B die-upset magnets (R=Pr, Nd) produced from mechanically milled powders. , 2005, , .		0
46	Bulk magnetic hardening in Cu-added (SmCo/sub 5/)/sub 1-x/(Sm/sub 2/Co/sub 17/)/sub x/ cast alloys. , 2005, , .		0
47	Observation of the lamellar phase in a Zr-free Sm(Co0.45Fe0.15Cu0.4)5 alloy. Applied Physics Letters, 2005, 87, 141910.	3.3	8
48	Fully Dense Sm-Co-Fe-Cu and Sm-Co-Fe-Ga Nanocomposite Magnets by Hot Compaction. IEEE Transactions on Magnetics, 2004, 40, 2916-2918.	2.1	7
49	Temperature dependence of coercivity and magnetization reversal mechanism in Sm(Co/sub bal/Fe/sub) Tj ETQq1	1_0.78431 2.1	14 rgBT /C
50	Bulk-hardened magnets based on Y2Co17. Journal of Applied Physics, 2001, 90, 882-890.	2.5	6
51	Anomalous temperature dependence of coercivity and reversal mechanism in bulk-hardened rare earth-cobalt magnets. Applied Physics Letters, 2001, 78, 1595-1597.	3.3	48
52	Pr–Zr–Co precipitation-hardened magnet. Applied Physics Letters, 2000, 76, 3786-3788.	3.3	11