Toshihide Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4699304/publications.pdf

Version: 2024-02-01

186 10,945 54 97
papers citations h-index g-index

198 198 198 11916
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature, 1998, 392, 193-197.	13.7	727
2	Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biology, 1999, 1, 113-118.	4.6	575
3	Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochemical Journal, 2004, 380, 161-171.	1.7	536
4	Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016, 7, 11932.	5.8	436
5	Separation and Characterization of Late Endosomal Membrane Domains. Journal of Biological Chemistry, 2002, 277, 32157-32164.	1.6	333
6	A Bilirubin-Inducible Fluorescent Protein from Eel Muscle. Cell, 2013, 153, 1602-1611.	13.5	269
7	The Tetraspanin CD63/lamp3 Cycles between Endocytic and Secretory Compartments in Human Endothelial Cells. Molecular Biology of the Cell, 2000, 11, 1829-1843.	0.9	266
8	Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12867-12872.	3.3	253
9	Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry, 1993, 32, 6365-6373.	1,2	251
10	Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochemical Journal, 2000, 351, 183.	1.7	205
11	<scp>STARD</scp> 3 mediates endoplasmic reticulumâ€toâ€endosome cholesterol transport at membrane contact sites. EMBO Journal, 2017, 36, 1412-1433.	3.5	191
12	Novel Lipogenic Enzyme ELOVL7 Is Involved in Prostate Cancer Growth through Saturated Long-Chain Fatty Acid Metabolism. Cancer Research, 2009, 69, 8133-8140.	0.4	170
13	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	6.0	167
14	Spatial and Functional Heterogeneity of Sphingolipid-rich Membrane Domains. Journal of Biological Chemistry, 2005, 280, 24072-24084.	1.6	157
15	A functional barrier to movement of lipids in polarized neurons. Nature, 1992, 359, 647-650.	13.7	145
16	Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. Journal of Experimental Medicine, 2005, 202, 249-259.	4.2	142
17	A Lipid-Specific Toxin Reveals Heterogeneity of Sphingomyelin-Containing Membranes. Biophysical Journal, 2004, 86, 296-307.	0.2	135
18	Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor- \hat{l}_{\pm} secretion in Abca1-deficient macrophages. Journal of Lipid Research, 2007, 48, 299-306.	2.0	127

#	Article	IF	Citations
19	A Role for Sphingomyelin-Rich Lipid Domains in the Accumulation of Phosphatidylinositol-4,5-Bisphosphate to the Cleavage Furrow during Cytokinesis. Molecular and Cellular Biology, 2012, 32, 1396-1407.	1.1	125
20	Curvature-Dependent Recognition of Ethanolamine Phospholipids by Duramycin and Cinnamycin. Biophysical Journal, 2007, 93, 1608-1619.	0.2	121
21	Oligomerization and Pore Formation of a Sphingomyelin-specific Toxin, Lysenin. Journal of Biological Chemistry, 2003, 278, 22762-22770.	1.6	118
22	A Novel Membrane Protein, Ros3p, Is Required for Phospholipid Translocation across the Plasma Membrane inSaccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 37855-37862.	1.6	117
23	Transport through recycling endosomes requires <scp>EHD</scp> 1 recruitment by a phosphatidylserineÂtranslocase. EMBO Journal, 2015, 34, 669-688.	3.5	113
24	Marine antifungal theonellamides target $3\hat{l}^2$ -hydroxysterol to activate Rho1 signaling. Nature Chemical Biology, 2010, 6, 519-526.	3.9	111
25	Transbilayer lipid asymmetry. Current Biology, 2018, 28, R386-R391.	1.8	110
26	Lipids, lipid domains and lipid–protein interactions in endocytic membrane traffic. Seminars in Cell and Developmental Biology, 1998, 9, 517-526.	2.3	109
27	Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. Journal of Cell Science, 2009, 122, 289-299.	1.2	109
28	Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chemical Science, 2011, 2, 1548.	3.7	108
29	Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. Journal of Cell Biology, 2017, 216, 1183-1204.	2.3	108
30	Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochemical Journal, 2005, 387, 17-26.	1.7	102
31	Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconjugate Journal, 2008, 25, 357-374.	1.4	101
32	Transbilayer lipid distribution in nano scale. Journal of Cell Science, 2015, 128, 1627-38.	1.2	95
33	Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13777-13782.	3.3	93
34	Distribution and Transport of Cholesterol-rich Membrane Domains Monitored by a Membrane-impermeant Fluorescent Polyethylene Glycol-derivatized Cholesterol. Journal of Biological Chemistry, 2004, 279, 23790-23796.	1.6	85
35	Cross-talk between Caveolae and Glycosylphosphatidylinositol-rich Domains. Journal of Biological Chemistry, 2001, 276, 30729-30736.	1.6	81
36	Role for Phospholipid Flippase Complex of ATP8A1 and CDC50A Proteins in Cell Migration. Journal of Biological Chemistry, 2013, 288, 4922-4934.	1.6	80

#	Article	IF	Citations
37	Lysenin: A sphingomyelin specific pore-forming toxin. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 612-618.	1.1	79
38	Visualization of the heterogeneous membrane distribution of sphingomyelin associated with cytokinesis, cell polarity, and sphingolipidosis. FASEB Journal, 2015, 29, 477-493.	0.2	76
39	Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood, 2013, 122, 3340-3348.	0.6	73
40	Cinnamycin (Ro 09-0198) Promotes Cell Binding and Toxicity by Inducing Transbilayer Lipid Movement. Journal of Biological Chemistry, 2003, 278, 3204-3209.	1.6	72
41	Lipid compartmentalization in the endosome system. Seminars in Cell and Developmental Biology, 2014, 31, 48-56.	2.3	72
42	De novo biosynthesis of the late endosome lipid, bis(monoacylglycero)phosphate. Journal of Lipid Research, 2007, 48, 1997-2008.	2.0	71
43	Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly. Nature Communications, 2016, 7, 11598.	5 . 8	71
44	Recognition of Sphingomyelin by Lysenin and Lysenin-Related Proteinsâ€. Biochemistry, 2004, 43, 9766-9773.	1.2	69
45	Localization of Lysobisphosphatidic Acid-Rich Membrane Domains in Late Endosomes. Biological Chemistry, 2001, 382, 483-5.	1.2	66
46	Carbohydrate-dependent signaling from the phosphatidylglucoside-based microdomain induces granulocytic differentiation of HL60 cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7454-7459.	3. 3	66
47	Imaging Lipid Rafts. Journal of Biochemistry, 2005, 137, 249-254.	0.9	66
48	Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. Genes To Cells, 2004, 9, 891-903.	0.5	65
49	Real-Time Visualization of Assembling of a Sphingomyelin-Specific Toxin on Planar Lipid Membranes. Biophysical Journal, 2013, 105, 1397-1405.	0.2	64
50	Interaction of Anti-Phospholipid Antibodies With Late Endosomes of Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 563-574.	1.1	63
51	Sphingomyelin Synthase 1-generated Sphingomyelin Plays an Important Role in Transferrin Trafficking and Cell Proliferation. Journal of Biological Chemistry, 2011, 286, 36053-36062.	1.6	63
52	Transport of exogenous fluorescent phosphatidylserine analogue to the Golgi apparatus in cultured fibroblasts Journal of Cell Biology, 1991, 113, 235-244.	2.3	58
53	Cholesterol Controls Lipid Endocytosis through Rab11. Molecular Biology of the Cell, 2007, 18, 2667-2677.	0.9	57
54	Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 23464-23477.	1.6	56

#	Article	IF	Citations
55	ATP-dependent fusion of liposomes with the Golgi apparatus of perforated cells. Cell, 1988, 55, 797-805.	13.5	54
56	Rapid Access to Synthetic Lysobisphosphatidic Acids Using PIIIChemistry. Organic Letters, 2000, 2, 1859-1861.	2.4	54
57	Caveolar Endocytosis and Microdomain Association of a Glycosphingolipid Analog Is Dependent on Its Sphingosine Stereochemistry*. Journal of Biological Chemistry, 2006, 281, 30660-30668.	1.6	53
58	Rapid flip-flop motions of diacylglycerol and ceramide in phospholipid bilayers. Chemical Physics Letters, 2012, 522, 96-102.	1.2	52
59	Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy. ACS Nano, 2015, 9, 7960-7967.	7.3	51
60	CARTS biogenesis requires VAP–lipid transfer protein complexes functioning at the endoplasmic reticulum–Golgi interface. Molecular Biology of the Cell, 2015, 26, 4686-4699.	0.9	51
61	Binding of a pleurotolysin ortholog from Pleurotus eryngii to sphingomyelin and cholesterol-rich membrane domains. Journal of Lipid Research, 2013, 54, 2933-2943.	2.0	49
62	Cholesterol and Lipid/Protein Ratio Control the Oligomerization of a Sphingomyelin-Specific Toxin, Lyseninâ€. Biochemistry, 2007, 46, 1495-1502.	1.2	48
63	Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells. Experimental Cell Research, 2009, 315, 3052-3063.	1.2	47
64	Revisiting transbilayer distribution of lipids in the plasma membrane. Chemistry and Physics of Lipids, 2016, 194, 58-71.	1.5	47
65	Sphingolipid transport from the trans-Golgi network to the apical surface in permeabilized MDCK cells. FEBS Letters, 1992, 300, 227-231.	1.3	46
66	Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB Journal, 2015, 29, 3920-3934.	0.2	46
67	Gangliosides and \hat{I}^21 -Integrin Are Required for Caveolae and Membrane Domains. Traffic, 2010, 11, 348-360.	1.3	45
68	The Single-Giant Unilamellar Vesicle Method Reveals Lysenin-Induced Pore Formation in Lipid Membranes Containing Sphingomyelin. Biochemistry, 2012, 51, 5160-5172.	1.2	44
69	<scp>NPC</scp> 1 enables cholesterol mobilization during longâ€term potentiation that can be restored inÂNiemann–Pick disease type C by <scp>CYP</scp> 46A1Âactivation. EMBO Reports, 2019, 20, e48143.	2.0	44
70	d-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol Alters Cellular Cholesterol Homeostasis by Modulating the Endosome Lipid Domains. Biochemistry, 2006, 45, 4530-4541.	1.2	41
71	Lipid Polarity Is Maintained in Absence of Tight Junctions. Journal of Biological Chemistry, 2012, 287, 9525-9533.	1.6	41
72	Plasma Membrane Origin of the Steroidogenic Pool of Cholesterol Used in Hormone-induced Acute Steroid Formation in Leydig Cells. Journal of Biological Chemistry, 2016, 291, 26109-26125.	1.6	41

#	Article	IF	CITATIONS
73	Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 812-829.	1.2	41
74	Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution. Journal of Lipid Research, 2011, 52, 2084-2094.	2.0	40
75	Subcellular localization of sphingomyelin revealed by two toxinâ€based probes in mammalian cells. Genes To Cells, 2012, 17, 720-727.	0.5	40
76	Synthesis and Inhibition Mechanism of Î"lac-Acetogenins, a Novel Type of Inhibitor of Bovine Heart Mitochondrial Complex I. Biochemistry, 2005, 44, 816-825.	1.2	39
77	Intracellular and Plasma Membrane Cholesterol Labeling and Quantification Using Filipin and GFP-D4. Methods in Molecular Biology, 2019, 1949, 137-152.	0.4	39
78	Peroxidation of liposomes in the presence of human erythrocytes and induction of membrane damage of erythrocytes by peroxidized liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1985, 814, 170-178.	1.4	38
79	Lipid sensing and lipid sensors. Cellular and Molecular Life Sciences, 2007, 64, 2492-2504.	2.4	38
80	Selective decrease of bis(monoacylglycero)phosphate content in macrophages by high supplementation with docosahexaenoic acid. Journal of Lipid Research, 2009, 50, 243-255.	2.0	38
81	Phosphatidylglucoside Forms Specific Lipid Domains on the Outer Leaflet of the Plasma Membrane. Biochemistry, 2010, 49, 4732-4739.	1.2	37
82	Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid α-glucosidase (alglucosidase alfa): Insight into the complex formation mechanism. Clinica Chimica Acta, 2008, 391, 68-73.	0.5	36
83	Spectroscopic Evidence for the Unusual Stereochemical Configuration of an Endosomeâ€Specific Lipid. Angewandte Chemie - International Edition, 2012, 51, 533-535.	7.2	35
84	Detection of Sphingomyelin Clusters by Raman Spectroscopy. Biophysical Journal, 2016, 111, 999-1007.	0.2	35
85	α7â€type acetylcholine receptor localization and its modulation by nicotine and cholesterol in vascular endothelial cells. Journal of Cellular Biochemistry, 2011, 112, 3276-3288.	1.2	34
86	On the origin of the 1602 cm ^{–1} Raman band of yeasts; contribution of ergosterol. Journal of Biophotonics, 2012, 5, 724-728.	1.1	34
87	A novel sphingomyelin/cholesterol domainâ€specific probe reveals the dynamics of the membrane domains during virus release and in Niemannâ€Pick type C. FASEB Journal, 2017, 31, 1301-1322.	0.2	34
88	Lipid Rafts: New Tools and a New Component. Biological and Pharmaceutical Bulletin, 2006, 29, 1526-1531.	0.6	33
89	Duramycin-Induced Destabilization of a Phosphatidylethanolamine Monolayer at the Airâ^'Water Interface Observed by Vibrational Sum-Frequency Generation Spectroscopy. Langmuir, 2010, 26, 16055-16062.	1.6	33
90	Lysenin: A new tool for investigating membrane lipid organization. Kaibogaku Zasshi Journal of Anatomy, 2004, 79, 184-190.	1.2	32

#	Article	IF	CITATIONS
91	Molecular interaction of imino sugars with human $\hat{l}\pm$ -galactosidase: Insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease. Molecular Genetics and Metabolism, 2009, 96, 233-238.	0.5	32
92	Properties and functions of lactosylceramide from mouse neutrophils. Glycobiology, 2015, 25, 655-668.	1.3	32
93	Vesiculation of platelet plasma membranes. Dilauroylglycerophosphocholine-induced shedding of a platelet plasma membrane fraction enriched in acetylcholinesterase activity. Biochimica Et Biophysica Acta - Biomembranes, 1984, 778, 210-218.	1.4	30
94	Lipid domains in the endocytic pathway. Seminars in Cell and Developmental Biology, 2001, 12, 173-182.	2.3	30
95	Anti-bis(monoacylglycero)phosphate antibody accumulates acetylated LDL-derived cholesterol in cultured macrophages. Journal of Lipid Research, 2007, 48, 543-552.	2.0	30
96	Assemblies of pore-forming toxins visualized by atomic force microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 500-511.	1.4	30
97	Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Seminars in Cell and Developmental Biology, 2018, 73, 188-198.	2.3	30
98	Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2012, 287, 24397-24411.	1.6	29
99	Imaging local sphingomyelin-rich domains in the plasma membrane using specific probes and advanced microscopy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 720-726.	1.2	29
100	Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 576-592.	1.4	29
101	Fungal Metabolite Sulfamisterin Suppresses Sphingolipid Synthesis through Inhibition of Serine Palmitoyltransferaseâ€. Biochemistry, 2005, 44, 268-277.	1.2	28
102	Phospholipase $\hat{Cl^2}$ 1 induces membrane tubulation and is involved in caveolae formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7834-7839.	3.3	28
103	Lipid Bilayers at the Gel Interface for Single Ion Channel Recordings. Analytical Chemistry, 2008, 80, 7792-7795.	3.2	27
104	Evaluation of the influence of ionization states and spacers in the thermotropic phase behaviour of amino acid-based cationic lipids and the transfection efficiency of their assemblies. International Journal of Pharmaceutics, 2012, 422, 364-373.	2.6	27
105	Visualization of Sterol-Rich Membrane Domains with Fluorescently-Labeled Theonellamides. PLoS ONE, 2013, 8, e83716.	1.1	27
106	Corrective effect on Fabry mice of yeast recombinant human \hat{l}_{\pm} -galactosidase with N-linked sugar chains suitable for lysosomal delivery. Journal of Human Genetics, 2006, 51, 341-352.	1.1	26
107	Stimulatory effects of combined endocrine disruptors on MA-10 Leydig cell steroid production and lipid homeostasis. Toxicology, 2016, 355-356, 21-30.	2.0	25
108	Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Biochimie, 2016, 130, 81-90.	1.3	25

#	Article	IF	CITATIONS
109	Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Reports, 2021, 35, 109219.	2.9	25
110	Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madinâ€Darby canine kidney cells. FASEB Journal, 2013, 27, 3284-3297.	0.2	24
111	Bis(Monoacylglycero)Phosphate Accumulation in Macrophages Induces Intracellular Cholesterol Redistribution, Attenuates Liver-X Receptor/ATP-Binding Cassette Transporter A1/ATP-Binding Cassette Transporter G1 Pathway, and Impairs Cholesterol Efflux. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013. 33. 1803-1811.	1.1	24
112	Lipid membrane domains in cell surface and vacuolar systems. Glycoconjugate Journal, 2000, 17, 163-171.	1.4	23
113	pH-dependent Formation of Membranous Cytoplasmic Body-Like Structure of Ganglioside GM1/Bis(Monoacylglycero)Phosphate Mixed Membranes. Biophysical Journal, 2007, 92, L13-L15.	0.2	23
114	PMP2/FABP8 induces PI(4,5)P2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Reports, 2021, 37, 109935.	2.9	22
115	Release of Vesicles Containing Acetylcholinesterase from Erythrocyte Membranes by Treatment with Dilauroylglycerophosphocholine1. Journal of Biochemistry, 1983, 93, 1691-1699.	0.9	21
116	Differential Membrane Packing of Stereoisomers of Bis(monoacylglycero)phosphate. Biochemistry, 2006, 45, 9198-9209.	1.2	21
117	Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes. Molecular Biology of the Cell, 2016, 27, 3293-3304.	0.9	21
118	Targeting Cholesterol in a Liquid-Disordered Environment by Theonellamides Modulates Cell Membrane Order and Cell Shape. Chemistry and Biology, 2015, 22, 604-610.	6.2	20
119	Protein probes to visualize sphingomyelin and ceramide phosphoethanolamine. Chemistry and Physics of Lipids, 2018, 216, 132-141.	1.5	20
120	Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages. Lipids, 2006, 41, 189-196.	0.7	19
121	Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P 2. Virology, 2016, 496, 116-126.	1.1	18
122	Total Synthesis and Biological Activities of (+)-Sulfamisterin (AB5366) and its Analogues. Journal of Antibiotics, 2005, 58, 37-49.	1.0	17
123	Stage-Specific Association of Apolipoprotein A-I and E in Developing Mouse Retina., 2007, 48, 1815.		17
124	Dynamics of sphingomyelin- and cholesterol-enriched lipid domains during cytokinesis. Methods in Cell Biology, 2017, 137, 15-24.	0.5	16
125	Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane. PLoS ONE, 2015, 10, e0120497.	1.1	16
126	Phosphatidylglucoside: Its structure, thermal behavior, and domain formation in plasma membranes. Chemistry and Physics of Lipids, 2012, 165, 197-206.	1.5	15

#	Article	IF	CITATIONS
127	Regulation of the transbilayer movement of diacylglycerol in the plasma membrane. Biochimie, 2014, 107, 43-50.	1.3	15
128	Nanomechanical Recognition of Sphingomyelin-Rich Membrane Domains by Atomic Force Microscopy. Biochemistry, 2012, 51, 74-82.	1.2	14
129	PDMP, a ceramide analogue, acts as an inhibitor of mTORC1 by inducing its translocation from lysosome to endoplasmic reticulum. Experimental Cell Research, 2017, 350, 103-114.	1.2	14
130	A weight averaged approach for predicting amide vibrational bands of a sphingomyelin bilayer. Physical Chemistry Chemical Physics, 2015, 17, 29113-29123.	1.3	13
131	Complementation analysis reveals a potential role of human <i>ARV1</i> in GPI anchor biosynthesis. Yeast, 2016, 33, 37-42.	0.8	13
132	Effect of Cholesterol on the Interaction of Cytochrome P450 Substrate Drug Chlorzoxazone with the Phosphatidylcholine Bilayer. Biochemistry, 2016, 55, 3888-3898.	1.2	13
133	Cholesterol asymmetry at the tip of filopodia during cell adhesion. FASEB Journal, 2020, 34, 6185-6197.	0.2	13
134	MOSPD2 is an endoplasmic reticulum–lipid droplet tether functioning in LD homeostasis. Journal of Cell Biology, 2022, 221, .	2.3	13
135	A Chinese Hamster Ovary Cell Mutant Resistant to Phosphatidylserine Is Defective in Transbilayer Movement of Cell Surface Phosphatidylserine. Experimental Cell Research, 1996, 228, 341-346.	1.2	12
136	Structural characterization of N-lignoceroyl (C24:0) sphingomyelin bilayer membranes: a re-evaluation. Journal of Applied Crystallography, 2007, 40, s312-s317.	1.9	12
137	Single channel properties of lysenin measured in artificial lipid bilayers and their applications to biomolecule detection. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 920-925.	1.6	12
138	Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). Journal of Lipid Research, 2011, 52, 1294-1302.	2.0	12
139	Antibody-Induced Acetylcholine Receptor Clusters Inhabit Liquid-Ordered and Liquid-Disordered Domains. Biophysical Journal, 2013, 105, 1601-1611.	0.2	12
140	Formation of tubules and helical ribbons by ceramide phosphoethanolamine-containing membranes. Scientific Reports, 2019, 9, 5812.	1.6	12
141	Fyn Tyrosine Kinase Regulates the Surface Expression of Glycosylphosphatidylinositol-linked Ephrin via the Modulation of Sphingomyelin Metabolism. Journal of Biological Chemistry, 2009, 284, 9206-9214.	1.6	11
142	Membrane Phospholipid Synthesis in Escherichia coli: Alteration by Glycerol and Physiological Consequences in a pss Mutant1. Journal of Biochemistry, 1986, 99, 1393-1400.	0.9	10
143	Visualization of Phospholipid Particle Fusion Induced by Duramycin. Langmuir, 2009, 25, 8200-8207.	1.6	10
144	Homologous genes, Pe.pleurotolysin A and Pe.ostreolysin, are both specifically and highly expressed in primordia and young fruiting bodies of Pleurotus eryngii. Mycoscience, 2014, 55, 113-117.	0.3	10

#	Article	IF	CITATIONS
145	Scanning Tunneling Microscope Observation of the Phosphatidylserine Domains in the Phosphatidylcholine Monolayer. Langmuir, 2015, 31, 5449-5455.	1.6	10
146	Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. International Immunology, 2019, 31, 211-223.	1.8	10
147	The use of pore-forming toxins to image lipids and lipid domains. Methods in Enzymology, 2021, 649, 503-542.	0.4	10
148	Lysis of Erythrocytes by Phosphatidyicholine Containing Polyunsaturated Fatty Acid. Journal of Biochemistry, 1983, 93, 675-680.	0.9	9
149	Effects of chlorpromazine and other calmodulin antagonists on phosphatidylcholine-induced vesiculation of platelet plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 855, 58-62.	1.4	9
150	Imaging cholesterol depletion at the plasma membrane by methyl- \hat{l}^2 -cyclodextrin. Journal of Lipid Research, 2021, 62, 100077.	2.0	9
151	Direct homophilic interaction of LAMP2A with the two-domain architecture revealed by site-directed photo-crosslinks and steric hindrances in mammalian cells. Autophagy, 2021, 17, 4286-4304.	4.3	9
152	Psychosine-triggered endomitosis is modulated by membrane sphingolipids through regulation of phosphoinositide 4,5-bisphosphate production at the cleavage furrow. Molecular Biology of the Cell, 2016, 27, 2037-2050.	0.9	8
153	Altered interaction between Sendai virus and a Chinese hamster cell mutant with defective cholesterol synthesis. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 159-164.	1.4	7
154	Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid. PLoS ONE, 2015, 10, e0131668.	1.1	6
155	Imaging Lipid Membrane Domains with Lipid-Specific Probes. , 2009, 580, 203-220.		6
156	Cholesterol regulation of rab-mediated sphingolipid endocytosis. Glycoconjugate Journal, 2009, 26, 705-710.	1.4	5
157	Asymmetrical diacylglycerol dynamics on the cytosolic and lumenal sides of a single endomembrane in living cells. Scientific Reports, 2015, 5, 12960.	1.6	5
158	Lipid Bilayers at Gel/Gel Interface for Ion Channel Recordings. E-Journal of Surface Science and Nanotechnology, 2008, 6, 130-133.	0.1	5
159	Inhibition of platelet aggregation by synthetic phosphatidylcholines: possible involvement of vesiculation of platelet plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1985, 817, 307-312.	1.4	4
160	Clinical, biochemical, and cytochemical studies on a Japanese Salla disease case associated with a renal disorder. Journal of Human Genetics, 2004, 49, 656-663.	1.1	4
161	Formation of Ordered Phospholipid Monolayer on a Hydrophilically Modified Au(111) Substrate. ACS Nano, 2016, 10, 7811-7820.	7.3	4
162	In Situ STM and Vibrational Study of Nanometer-Scale Reorganization of a Phospholipid Monolayer Accompanied by Potential-Driven Headgroup Digestion. Langmuir, 2017, 33, 13157-13167.	1.6	4

#	Article	IF	CITATIONS
163	Impact of Intrinsic and Extrinsic Factors on Cellular Sphingomyelin Imaging with Specific Reporter Proteins. Contact (Thousand Oaks (Ventura County, Calif)), 2021, 4, 251525642110424.	0.4	4
164	Glycosphingolipid deficiency increases the sterol regulatory element-mediated gene transcription. Biochemical and Biophysical Research Communications, 2009, 378, 240-243.	1.0	3
165	Wrapping axons in mammals and Drosophila: Different lipids, same principle. Biochimie, 2020, 178, 39-48.	1.3	3
166	A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	3
167	Light-Induced Potential and Current across a Large Bacteriorhodopsin-Asolectin Planar Membrane Stabilized on a Polyacrylamide Gel Surface. Journal of Biochemistry, 1986, 99, 777-783.	0.9	2
168	Membrane Properties of Dipalmitoyl Bis (monoaclyglycero) phosphate. Membrane, 2007, 32, 221-228.	0.0	2
169	Photoswitchable phospholipid FRET acceptor: Detergent free intermembrane transfer assay of fluorescent lipid analogs. Scientific Reports, 2017, 7, 2900.	1.6	2
170	Imaging Sphingomyelin- and Cholesterol-Enriched Domains in the Plasma Membrane Using a Novel Probe and Super-Resolution Microscopy. Advances in Experimental Medicine and Biology, 2021, 1310, 81-90.	0.8	2
171	Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Chemistry and Physics of Lipids, 2007, 149, S31.	1.5	1
172	Flip-Flop Motions of Lipid Molecules in Mixed Bilayer Systems. Biophysical Journal, 2010, 98, 489a.	0.2	1
173	Mechanisms regulating membrane traffic in the endocytic pathway. Biology of the Cell, 1998, 90, 105-105.	0.7	0
174	2P271 Structural investigation on highly asymmetric sphingomyelin (C24:0 SM) bilayers (40. Membrane) Tj ETQq0 S363.	_	/Overlock 10 0
175	2P296 Single channel properties of lysenin measured in the artificial lipid bilayer. II: effect of lipid composition and poly-L-lysin(Native and artificial biomembranes-excitation and channels,Poster) Tj ETQq1 1 0.784	3 1. 6 rgBT /	∕ ⊘ verlock 1(
176	3P-222 Lysenin channel as a nanopore for biosensing applications(The 46th Annual Meeting of the) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 5
177	Visualization of lipid domains. Chemistry and Physics of Lipids, 2009, 160, S2.	1.5	O
178	Small-angle and wide-angle X-ray scattering study on the bilayer structure of synthetic and bovine heart cardiolipins. Journal of Physics: Conference Series, 2010, 247, 012021.	0.3	0
179	2P237 Effect of the degree of saturation on membrane thickness of cardiolipin bilayers: implications for Barth syndrome(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S124.	0.0	O
180	Imaging lipid dynamics. Neuroscience Research, 2011, 71, e28-e29.	1.0	0

#	Article	IF	CITATIONS
181	Real-Time Visualization of a Pore-Forming Toxin Assembling on a Model Membrane. Biophysical Journal, 2013, 104, 360a.	0.2	0
182	1P191 Actin dynamics in cells cultured on engineered micro-topographical substrate(12.Cell) Tj ETQq0 0 0 rgBT s	Overlock 0.0	10 Tf 50 707 0
183	Assembling of a Pore-Forming Toxin on a Model Membrane. Biophysical Journal, 2014, 106, 97a.	0.2	0
184	Lysenin: A New Probe for Sphingomyelin. , 2006, , 475-482.		0
185	Strategy of Cinnamycin and Duramycin, Peptide Toxins that Target Ethanolamine Phospholipids. Seibutsu Butsuri, 2009, 49, 122-125.	0.0	O
186	Transbilayer Lipid Distribution in Nano Scale. FASEB Journal, 2015, 29, 568.15.	0.2	0