
Jose M Moran-Mirabal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4699091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring the Lateral Diffusion of Plasma Membrane Receptors Using Raster Image Correlation Spectroscopy. Methods in Molecular Biology, 2022, 2440, 289-303.	0.4	1
2	Efficient Multi-Material Structured Thin Film Transfer to Elastomers for Stretchable Electronic Devices. Micromachines, 2022, 13, 334.	1.4	5
3	Grafted maleic acid copolymer giving thermosetting kraft pulp. Cellulose, 2022, 29, 3745-3758.	2.4	2
4	Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications. Biomacromolecules, 2022, 23, 1981-1994.	2.6	12
5	Hydroxyapatite Nanoparticles as a Potential Long-Term Treatment of Cancer of Epithelial Origin. ACS Applied Nano Materials, 2022, 5, 6159-6170.	2.4	2
6	Bioinspired Thermoresponsive Xyloglucan–Cellulose Nanocrystal Hydrogels. Biomacromolecules, 2021, 22, 743-753.	2.6	15
7	Fabrication of microstructured electrodes via electroless metal deposition onto polydopamine oated polystyrene substrates and thermal shrinking. Nano Select, 2021, 2, 1926-1940.	1.9	9
8	Ultrathinâ€Walled 3D Inorganic Nanostructured Networks Templated from Cross‣inked Cellulose Nanocrystal Aerogels. Advanced Materials Interfaces, 2021, 8, 2001181.	1.9	2
9	Direct Comparison of Three Buckling-Based Methods to Measure the Elastic Modulus of Nanobiocomposite Thin Films. ACS Applied Materials & Interfaces, 2021, 13, 29187-29198.	4.0	4
10	High-yield grafting of carboxylated polymers to wood pulp fibers. Cellulose, 2021, 28, 7311-7326.	2.4	5
11	High Yield Poly(ethylene- <i>alt</i> -maleic acid) Grafting to Wood Pulp while Minimizing Fiber/Fiber Wet Adhesion. Biomacromolecules, 2021, 22, 3060-3068.	2.6	4
12	A Robust Protocol for Decellularized Human Lung Bioink Generation Amenable to 2D and 3D Lung Cell Culture. Cells, 2021, 10, 1538.	1.8	22
13	Correlative Light and Electron Microscopy for the Study of the Structural Arrangement of Bacterial Microcrystalline Cellulose Microfibrils. Microscopy and Microanalysis, 2021, 27, 566-569.	0.2	1
14	Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via sequential electrospinning and thermal wrinkling. Acta Biomaterialia, 2021, 128, 250-261.	4.1	16
15	Visualization of nanostructural dislocations in microcrystalline cellulose fibrils through super-resolution fluorescence microscopy. Microscopy and Microanalysis, 2021, 27, 854-857.	0.2	1
16	Direct Measurement of the Affinity between tBid and Bax in a Mitochondria-Like Membrane. International Journal of Molecular Sciences, 2021, 22, 8240.	1.8	4
17	Carboxylated bleached kraft pulp from maleic anhydride copolymers. Nordic Pulp and Paper Research Journal, 2021, .	0.3	2
18	Graft-Then-Shrink: Simultaneous Generation of Antifouling Polymeric Interfaces and Localized Surface Plasmon Resonance Biosensors, ACS Applied Materials & amp: Interfaces, 2021, 13, 52362-52373	4.0	7

#	Article	IF	CITATIONS
19	Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings. ACS Applied Bio Materials, 2021, 4, 8443-8455.	2.3	15
20	Lateral diffusion of CD14 and TLR2 in macrophage plasma membrane assessed by raster image correlation spectroscopy and singleAparticle tracking. Scientific Reports, 2020, 10, 19375.	1.6	6
21	Xyloglucan Structure Impacts the Mechanical Properties of Xyloglucan–Cellulose Nanocrystal Layered Films—A Buckling-Based Study. Biomacromolecules, 2020, 21, 3898-3908.	2.6	15
22	Rapid, catalystâ€free crosslinking of silicones using triazines. Journal of Polymer Science, 2020, 58, 1949-1959.	2.0	3
23	Benchtop-fabricated lipid-based electrochemical sensing platform for the detection of membrane disrupting agents. Scientific Reports, 2020, 10, 4595.	1.6	9
24	Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano Materials, 2019, 2, 4968-4973.	2.4	7
25	Cellulose Nanocrystal Aerogels as Electrolyte Scaffolds for Glass and Plastic Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 5635-5642.	2.5	29
26	The Topography of Silica Films Modulates Primary Macrophage Morphology and Function. Advanced Materials Interfaces, 2019, 6, 1900677.	1.9	12
27	Controlling silicone networks using dithioacetal crosslinks. Polymer Chemistry, 2019, 10, 219-227.	1.9	14
28	2.5D Hierarchical Structuring of Nanocomposite Hydrogel Films Containing Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 6325-6335.	4.0	25
29	Fabrication of polycaprolactone electrospun nanofibers doped with silver nanoparticles formed by air plasma treatment. Nanotechnology, 2019, 30, 215101.	1.3	12
30	Patterned Cellulose Nanocrystal Aerogel Films with Tunable Dimensions and Morphologies as Ultra-Porous Scaffolds for Cell Culture. ACS Applied Nano Materials, 2019, 2, 4169-4179.	2.4	25
31	Tissue Response and Biodistribution of Injectable Cellulose Nanocrystal Composite Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 2235-2246.	2.6	46
32	Membrane charge and lipid packing determine polymyxin-induced membrane damage. Communications Biology, 2019, 2, 67.	2.0	37
33	Plasma Membrane: The Topography of Silica Films Modulates Primary Macrophage Morphology and Function (Adv. Mater. Interfaces 21/2019). Advanced Materials Interfaces, 2019, 6, 1970135.	1.9	0
34	Dynamically Evolving Surface Patterns through Light-Triggered Wrinkling Erasure. Langmuir, 2019, 35, 875-881.	1.6	6
35	Bonding and inâ€channel microfluidic functionalization using the huisgen cyclization. Journal of Polymer Science Part A, 2018, 56, 589-597.	2.5	7
36	Versatile Surface Modification of Cellulose Fibers and Cellulose Nanocrystals through Modular Triazinyl Chemistry. Chemistry of Materials, 2018, 30, 2424-2435.	3.2	65

#	Article	IF	CITATIONS
37	Green Templating of Ultraporous Cross-Linked Cellulose Nanocrystal Microparticles. Chemistry of Materials, 2018, 30, 8040-8051.	3.2	25
38	Self-Cross-Linking p(APM- <i>co</i> -AA) Microstructured Thin Films as Biomimetic Scaffolds. ACS Applied Bio Materials, 2018, 1, 1512-1522.	2.3	7
39	Microstructured Anodes by Surface Wrinkling for Studies of Direct Electron Transfer Biofilms in Microbial Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1800290.	1.9	21
40	Analysis of the Binding of Expansin Exl1, from <i>Pectobacterium carotovorum</i> , to Plant Xylem and Comparison to EXLX1 from <i>Bacillus subtilis</i> . ACS Omega, 2018, 3, 7008-7018.	1.6	11
41	X-ray Absorption Spectroscopy and Spectromicroscopy of Supported Lipid Bilayers. Journal of Physical Chemistry B, 2017, 121, 4492-4501.	1.2	5
42	A Hidden Markov Model Approach to Measure Two-State Diffusion of Thermobifida Fusca Cellulases. Biophysical Journal, 2017, 112, 152a.	0.2	1
43	Beyond buckling: humidity-independent measurement of the mechanical properties of green nanobiocomposite films. Nanoscale, 2017, 9, 7781-7790.	2.8	20
44	The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes. Scientific Reports, 2017, 7, 39661.	1.6	53
45	Membrane Cholesterol Reduces Polymyxin B Nephrotoxicity in Renal Membrane Analogs. Biophysical Journal, 2017, 113, 2016-2028.	0.2	24
46	Nanostructure of Fully Injectable Hydrazone–Thiosuccinimide Interpenetrating Polymer Network Hydrogels Assessed by Small-Angle Neutron Scattering and dSTORM Single-Molecule Fluorescence Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 42179-42191.	4.0	14
47	Bench-Top Fabrication of an All-PDMS Microfluidic Electrochemical Cell Sensor Integrating Micro/Nanostructured Electrodes. Sensors, 2017, 17, 732.	2.1	30
48	Highly Bendable and Stretchable Electrodes Based on Micro/Nanostructured Gold Films for Flexible Sensors and Electronics. Advanced Electronic Materials, 2016, 2, 1500345.	2.6	43
49	Investigating Diffusion of Receptors on Macrophage Membranes using Single Molecule Tracking. Biophysical Journal, 2016, 110, 427a.	0.2	Ο
50	Robust and High-Throughput Method for Anionic Metabolite Profiling: Preventing Polyimide Aminolysis and Capillary Breakages under Alkaline Conditions in Capillary Electrophoresis-Mass Spectrometry. Analytical Chemistry, 2016, 88, 10710-10719.	3.2	45
51	Micropatterning of Phase-Segregated Supported Lipid Bilayers and Binary Lipid Phases through Polymer Stencil Lift-Off. Langmuir, 2016, 32, 11021-11028.	1.6	6
52	Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14560-14566.	1.7	37
53	Influence of Polymer Electronics on Selective Dispersion of Single-Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14413-14413.	1.7	1
54	Single-Molecule Fluorescence Microscopy and Tracking of Lipids in Mitochondrial-Like Supported Lipid Bilayers. Biophysical Journal, 2015, 108, 162a.	0.2	0

JOSE M MORAN-MIRABAL

#	Article	IF	CITATIONS
55	Lipid Diffusion in Supported Lipid Bilayers: A Comparison between Line-Scanning Fluorescence Correlation Spectroscopy and Single-Particle Tracking. Membranes, 2015, 5, 702-721.	1.4	28
56	Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off. Membranes, 2015, 5, 385-398.	1.4	7
57	Rapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes. Biomicrofluidics, 2015, 9, 026501.	1.2	21
58	Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing. Nanotechnology, 2015, 26, 395301.	1.3	11
59	The Study of Cellulose Structure and Depolymerization Through Single-Molecule Methods. Industrial Biotechnology, 2015, 11, 16-24.	0.5	9
60	Cellulose Nanotechnology on the Rise. Industrial Biotechnology, 2015, 11, 14-15.	0.5	4
61	One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels. Lab on A Chip, 2015, 15, 4322-4330.	3.1	32
62	Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnology and Bioengineering, 2015, 112, 21-31.	1.7	24
63	Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass. Biotechnology and Bioengineering, 2015, 112, 32-42.	1.7	32
64	Rapid prototyping of a miniaturized Electrospinning setup for the production of polymer nanofibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	4
65	Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled <i>Trichoderma reseii</i> Cel7A through confocal microscopy. Biotechnology and Bioengineering, 2013, 110, 108-117.	1.7	40
66	<i>Thermobifida fusca</i> cellulases exhibit limited surface diffusion on bacterial microâ€crystalline cellulose. Biotechnology and Bioengineering, 2013, 110, 47-56.	1.7	19
67	Benchâ€Top Fabrication of Hierarchically Structured Highâ€Surfaceâ€Area Electrodes. Advanced Functional Materials, 2013, 23, 3030-3039.	7.8	70
68	Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules, 2013, 14, 3278-3284.	2.6	111
69	The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose, 2013, 20, 2291-2309.	2.4	33
70	Investigation of the porous structure of cellulosic substrates through confocal laser scanning microscopy. Biotechnology and Bioengineering, 2013, 110, 2836-2845.	1.7	16
71	Determination of the molecular states of the processive endocellulase <i>Thermobifida fusca</i> Cel9A during crystalline cellulose depolymerization. Biotechnology and Bioengineering, 2012, 109, 295-299.	1.7	30
72	Single-Molecule Fluorescence Spectroscopy Techniques for Biomedicine. , 2012, , 201-254.		0

5

JOSE M MORAN-MIRABAL

#	Article	IF	CITATIONS
73	PySM an Integrated Data Management and Analysis Platform for Single Molecule Experimentation. Biophysical Journal, 2011, 100, 140a.	0.2	0
74	Investigating Cellulase Synergistic Binding and Activity on Simple and Complex Cellulose Morphological Structures. Biophysical Journal, 2011, 100, 488a-489a.	0.2	1
75	Do Cellulases Exhibit Diffusion Along Cellulose Surfaces? Evidence from FRAP and Single Molecule Experiments. Biophysical Journal, 2011, 100, 488a.	0.2	0
76	Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy. Cellulose, 2011, 18, 749-758.	2.4	20
77	Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophysical Chemistry, 2011, 155, 20-28.	1.5	42
78	Binding Kinetics and Fraction of Immobile Enzymes Bound to Cellulose Fibrils Studied Through Confocal Laser Scanning Fluorescence Microscopy and FRAP. Biophysical Journal, 2010, 98, 747a.	0.2	0
79	Surface Diffusion of Cellulases on Cellulose Fibrils Studied through Fluorescence Spectroscopy. Biophysical Journal, 2010, 98, 748a-749a.	0.2	0
80	Investigation of the Effects of Cellulose Morphology on Synergism in Cellulase Mixtures using Quantitative Fluorescence Microscopy. Biophysical Journal, 2010, 98, 749a.	0.2	1
81	Labeling and Purification of Cellulose-Binding Proteins for High Resolution Fluorescence Applications. Analytical Chemistry, 2009, 81, 7981-7987.	3.2	15
82	Fluorescence Labeling And Purification Of Cellulases For Single Molecule Spectroscopy. Biophysical Journal, 2009, 96, 45a.	0.2	0
83	Elucidating the Molecular Basis of Cellulase Synergism Through High Resolution Quantitative Fluorescence Microscopy. Biophysical Journal, 2009, 96, 400a.	0.2	0
84	Immobilization of cellulose fibrils on solid substrates for cellulaseâ€binding studies through quantitative fluorescence microscopy. Biotechnology and Bioengineering, 2008, 101, 1129-1141.	1.7	31
85	Operating mechanism of light-emitting electrochemical cells. Nature Materials, 2008, 7, 168-168.	13.3	49
86	Zero-mode waveguides: Sub-wavelength nanostructures for single molecule studies at high concentrations. Methods, 2008, 46, 11-17.	1.9	54
87	Cell investigation of nanostructures: zero-mode waveguides for plasma membrane studies with single molecule resolution. Nanotechnology, 2007, 18, 195101.	1.3	48
88	Controlling Microarray Spot Morphology with Polymer Liftoff Arrays. Analytical Chemistry, 2007, 79, 1109-1114.	3.2	37
89	Electrospun Light-Emitting Nanofibers. Nano Letters, 2007, 7, 458-463.	4.5	139
90	Phase Separation and Fractal Domain Formation in Phospholipid/Diacetylene-Supported Lipid Bilayers. Langmuir, 2007, 23, 10661-10671.	1.6	17

JOSE M MORAN-MIRABAL

#	Article	IF	CITATIONS
91	Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nature Materials, 2007, 6, 894-899.	13.3	275
92	Supported lipid bilayer/carbon nanotube hybrids. Nature Nanotechnology, 2007, 2, 185-190.	15.6	147
93	Nonspecific binding removal from protein microarrays using thickness shear mode resonators. IEEE Sensors Journal, 2006, 6, 254-261.	2.4	25
94	Zero Mode Waveguides for Single-Molecule Spectroscopy on Lipid Membranes. Biophysical Journal, 2006, 90, 3288-3299.	0.2	116
95	Individually Resolved DNA Molecules Stretched and Embedded in Electrospun Polymer Nanofibers. Nano Letters, 2006, 6, 2526-2530.	4.5	49
96	Suspended glass nanochannels coupled with microstructures for single molecule detection. Journal of Applied Physics, 2005, 97, 124317.	1.1	45
97	Micrometer-Sized Supported Lipid Bilayer Arrays for Bacterial Toxin Binding Studies through Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2005, 89, 296-305.	0.2	84
98	One-parameter nonrelativistic supersymmetry for microtubules. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 310, 353-356.	0.9	7
99	Preparation and Fusion of Citrus sp. Microprotoplasts. Journal of the American Society for Horticultural Science, 2002, 127, 484-488.	0.5	8