Fabio Marchetti

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/469887/fabio-marchetti-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

8,665 61 43 423 h-index g-index citations papers 6.19 9,485 3.9 441 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
423	Synthesis and structural characterisation of some 1:1:2 complexes of silver(I) compounds with triphenylpnictides and athylenediamine[[(Ph3E)(N-en)Ag(N-en-N')2Ag(N-en)(EPh3)]2+(X]2. <i>Inorganica Chimica Acta</i> , 2022 , 534, 120825	2.7	
422	Synthesis and structural characterization of some 1:1 and 1:2 adducts of silver(I) salts with hindered Pmes3, PPhmes2 and PPh2mes bases (Ph = phenyl, mes = 2,4,6-trimethylpheny1)). <i>Inorganica Chimica Acta</i> , 2022 , 535, 120857	2.7	
421	Cyanide-alkene competition in a diiron complex and isolation of a multisite (cyano)alkylidene-alkene species <i>Dalton Transactions</i> , 2022 ,	4.3	3
42 0	Towards bright dysprosium emitters: Single and combined effects of environmental symmetry, deuteration, and gadolinium dilution. <i>Dyes and Pigments</i> , 2022 , 199, 110078	4.6	2
419	Tethering Carbohydrates to the Vinyliminium Ligand of Antiproliferative Organometallic Diiron Complexes <i>Organometallics</i> , 2022 , 41, 514-526	3.8	2
418	A comparative structural and spectroscopic study of diiron and diruthenium isocyanide and aminocarbyne complexes. <i>Inorganica Chimica Acta</i> , 2022 , 536, 120886	2.7	1
4 1 7	Synthesis and structural characterisation of four 1:1:2 ionic/mononuclear complexes of Ag(I) and Cu(I) salts with tertiary organophosphine and 1,2-diamines. <i>Inorganica Chimica Acta</i> , 2022 , 536, 120882	2.7	O
416	Synthesis and structural characterization of some 1:1 adducts of silver(I) salts with (hindered) PR3 bases (RI=Iphenyl, o-tolyl, cyclohexyl). <i>Inorganica Chimica Acta</i> , 2022 , 536, 120895	2.7	
415	Screening the biological properties of transition metal carbamates reveals gold(I) and silver(I) complexes as potent cytotoxic and antimicrobial agents. <i>Journal of Inorganic Biochemistry</i> , 2021 , 227, 111667	4.2	1
414	A Comprehensive Analysis of the Metal-Nitrile Bonding in an Organo-Diiron System. <i>Molecules</i> , 2021 , 26,	4.8	5
413	Role of the (pseudo)halido ligand in ruthenium(II) -cymene ե mino acid complexes in speciation, protein reactivity and cytotoxicity. <i>Dalton Transactions</i> , 2021 , 50, 15760-15777	4.3	2
412	Serendipitous Formation of a Zwitterionic Imidazolium Molecule from Diimine with Glyoxal as Unusual Cyclization Agent. <i>ChemistrySelect</i> , 2021 , 6, 10051-10053	1.8	O
411	New Platinum(II) Complexes Affecting Different Biomolecular Targets in Resistant Ovarian Carcinoma Cells. <i>ChemMedChem</i> , 2021 , 16, 1956-1966	3.7	6
410	Ruthenium(II) 1,4,7-trithiacyclononane complexes of curcumin and bisdemethoxycurcumin: Synthesis, characterization, and biological activity. <i>Journal of Inorganic Biochemistry</i> , 2021 , 218, 111387	4.2	1
409	The Cytotoxic Activity of Diiron Bis-Cyclopentadienyl Complexes with Bridging C3-Ligands. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 4351	2.6	1
408	Trapping carbamates of Amino acids: One-Pot and catalyst-free synthesis of 5-Aryl-2-Oxazolidinonyl derivatives. <i>Journal of CO2 Utilization</i> , 2021 , 47, 101495	7.6	2
407	Hetero-Bis-Conjugation of Bioactive Molecules to Half-Sandwich Ruthenium(II) and Iridium(III) Complexes Provides Synergic Effects in Cancer Cell Cytotoxicity. <i>Inorganic Chemistry</i> , 2021 , 60, 9529-95.	4 ⁵ 1.1	5

(2020-2021)

406	Easily Available, Amphiphilic Diiron Cyclopentadienyl Complexes Exhibit in Vitro Anticancer Activity in 2D and 3D Human Cancer Cells through Redox Modulation Triggered by CO Release. <i>Chemistry - A European Journal</i> , 2021 , 27, 10169-10185	4.8	13
405	Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. <i>Mitochondrion</i> , 2021 , 56, 25-34	4.9	4
404	Synthesis and structural characterisation of some mononuclear 1:1:1 complexes of coinage metal(I) compounds with tertiary phosphines (arsines) and 1,2-diamines, [MX(EPh3)(N,N'-1,2-diamine)]. <i>Inorganica Chimica Acta</i> , 2021 , 517, 120185	2.7	3
403	Synthesis of Ealkylidene cyclic carbonates via CO2 fixation under ambient conditions promoted by an easily available silver carbamate. <i>New Journal of Chemistry</i> , 2021 , 45, 4340-4346	3.6	3
402	Non-precious metal carbamates as catalysts for the aziridine/CO coupling reaction under mild conditions. <i>Dalton Transactions</i> , 2021 , 50, 5351-5359	4.3	6
401	Modulating the water oxidation catalytic activity of iridium complexes by functionalizing the Cp*-ancillary ligand: hints on the nature of the active species. <i>Catalysis Science and Technology</i> , 2021 , 11, 2885-2895	5.5	2
400	Total- and semi-bare noble metal nanoparticles@silica core@shell catalysts for hydrogen generation by formic acid decomposition. <i>Emergent Materials</i> , 2021 , 4, 483-491	3.5	3
399	Ruthenium arene complexes in the treatment of 3D models of head and neck squamous cell carcinomas. <i>European Journal of Medicinal Chemistry</i> , 2021 , 212, 113143	6.8	5
398	Unsymmetrical Dinuclear Rull Complexes with Bridging Polydentate Nitrogen Ligands as Potential Water Oxidation Catalysts. <i>European Journal of Inorganic Chemistry</i> , 2021 , 2021, 861-869	2.3	O
397	Anticancer Diiron Vinyliminium Complexes: A Structure-Activity Relationship Study. <i>Pharmaceutics</i> , 2021 , 13,	6.4	9
396	Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of Hillimine and halide ligands. <i>Chemico-Biological Interactions</i> , 2021 , 344, 109522	5	7
395	Lanthanide azolecarboxylate compounds: Structure, luminescent properties and applications. <i>Coordination Chemistry Reviews</i> , 2021 , 445, 214084	23.2	19
394	Titania-decorated hybrid nano-architectures and their preliminary assessment in catalytic applications. <i>Nano Structures Nano Objects</i> , 2021 , 28, 100788	5.6	
393	Antimicrobial MOFs. Coordination Chemistry Reviews, 2021, 446, 214121	23.2	23
392	Aminocarbyne ligands in organometallic chemistry. <i>Coordination Chemistry Reviews</i> , 2021 , 449, 214203	23.2	6
391	Arene-ruthenium(II) complexes with pyrazole-based ligands bearing a pyridine moiety: Synthesis, structure, DFT calculations, and cytotoxicity. <i>Inorganica Chimica Acta</i> , 2021 , 528, 120610	2.7	3
390	Diethylammonium iodide as catalyst for the metal-free synthesis of 5-aryl-2-oxazolidinones from aziridines and carbon dioxide. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 4152-4161	3.9	4
389	Preparation and Characterization of Silver(I) Ethylcellulose Thin Films as Potential Food Packaging Materials. <i>ChemPlusChem</i> , 2020 , 85, 426-440	2.8	3

388	Ionic liquids vs conventional solvents: A comparative study in the selective catalytic oxidations promoted by oxovanadium(IV) complexes. <i>Applied Catalysis A: General</i> , 2020 , 599, 117622	5.1	8
387	A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. <i>Journal of Experimental and Clinical Cancer Research</i> , 2020 , 39, 122	12.8	7
386	Exploring the Anticancer Potential of Diiron Bis-cyclopentadienyl Complexes with Bridging Hydrocarbyl Ligands: Behavior in Aqueous Media and In Vitro Cytotoxicity. <i>Organometallics</i> , 2020 , 39, 645-657	3.8	22
385	Ru(ii) water oxidation catalysts with 2,3-bis(2-pyridyl)pyrazine and tris(pyrazolyl)methane ligands: assembly of photo-active and catalytically active subunits in a dinuclear structure. <i>Dalton Transactions</i> , 2020 , 49, 3341-3352	4.3	2
384	Tethering (Arene)Ru(II) Acylpyrazolones Decorated with Long Aliphatic Chains to Polystyrene Surfaces Provides Potent Antibacterial Plastics. <i>Materials</i> , 2020 , 13,	3.5	5
383	Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing Bynuclein oligomers. <i>Sensors and Actuators B: Chemical</i> , 2020 , 309, 127821	8.5	80
382	Investigation on the interconversion from DMF-solvated to unsolvated copper(II) pyrazolate coordination polymers. <i>CrystEngComm</i> , 2020 , 22, 3294-3308	3.3	5
381	Fifteen Years of Scientific Investigation into Main Groups and Transition Metal Coordination Chemistry with Allan White. <i>Australian Journal of Chemistry</i> , 2020 , 73, 399	1.2	1
380	Exploring the Molecular Mechanisms Underlying the in vitro Anticancer Effects of Multitarget-Directed Hydrazone Ruthenium(II)-Arene Complexes. <i>ChemMedChem</i> , 2020 , 15, 105-113	3.7	10
379	Conjugating Biotin to Ruthenium(II) Arene Units via Phosphine Ligand Functionalization. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1061-1072	2.3	5
378	Zinc(II) Complexes of Acylpyrazolones Decorated with a Cyclohexyl Group Display Antiproliferative Activity Against Human Breast Cancer Cells. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 1027-	1039	5
377	Diiron Complexes with a Bridging Functionalized Allylidene Ligand: Synthesis, Structural Aspects, and Cytotoxicity. <i>Organometallics</i> , 2020 , 39, 361-373	3.8	12
376	Synthesis, phosphorescence and luminescence properties of novel europium and gadolinium tris-acylpyrazolonate complexes. <i>Inorganica Chimica Acta</i> , 2020 , 502, 119279	2.7	5
375	Piano Stool Aminoalkylidene-Ferracyclopentenone Complexes from Bimetallic Precursors: Synthesis and Cytotoxicity Data. <i>ChemPlusChem</i> , 2020 , 85, 110-122	2.8	7
374	Semiconducting CuNi(hexahydroxytriphenylene) framework for electrochemical aptasensing of C6 glioma cells and epidermal growth factor receptor. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 9951-9960	₎ 7·3	10
373	Tetrasubstituted Selenophenes from the Stepwise Assembly of Molecular Fragments on a Diiron Frame and Final Cleavage of a Bridging Alkylidene. <i>Inorganic Chemistry</i> , 2020 , 59, 17497-17508	5.1	6
372	Bis-conjugation of Bioactive Molecules to Cisplatin-like Complexes through (2,2'-Bipyridine)-4,4'-Dicarboxylic Acid with Optimal Cytotoxicity Profile Provided by the Combination Ethacrynic Acid/Flurbiprofen. <i>Chemistry - A European Journal</i> , 2020 , 26, 17525-17535	4.8	5
371	Potassium-Doped Para-Terphenyl: Structure, Electrical Transport Properties and Possible Signatures of a Superconducting Transition. <i>Condensed Matter</i> , 2020 , 5, 78	1.8	3

(2018-2020)

370	Construction of a Functionalized Selenophene-Allylidene Ligand via Alkyne Double Action at a Diiron Complex. <i>European Journal of Inorganic Chemistry</i> , 2020 , 2020, 3268-3276	2.3	4
369	Synthesis, crystal structure and photophysical properties of mixed-ligand lanthanide complexes with 1,3-diketonates bearing pyrazole moieties and 1,10-phenanthroline. <i>Inorganica Chimica Acta</i> , 2020 , 513, 119922	2.7	8
368	Antiproliferative and bactericidal activity of diiron and monoiron cyclopentadienyl carbonyl complexes comprising a vinyl-aminoalkylidene unit. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5923	3.1	10
367	Recent Advances in the Chemistry of Metal Carbamates. <i>Molecules</i> , 2020 , 25,	4.8	15
366	Surveying Italian and International Baccalaureate Teachers to Compare Their Opinions on System Concept and Interdisciplinary Approaches in Chemistry Education. <i>Journal of Chemical Education</i> , 2020 , 97, 3575-3587	2.4	2
365	Bypassing the Inertness of Aziridine/CO Systems to Access 5-Aryl-2-Oxazolidinones: Catalyst-Free Synthesis Under Ambient Conditions. <i>ChemSusChem</i> , 2020 , 13, 5586-5594	8.3	6
364	Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. <i>Coordination Chemistry Reviews</i> , 2019 , 401, 213069	23.2	45
363	Straightforward formation of carbocations from tertiary carboxylic acids via CO release at room temperature. <i>Dalton Transactions</i> , 2019 , 48, 1574-1577	4.3	1
362	Carboxylation of terminal alkynes promoted by silver carbamate at ambient pressure. <i>New Journal of Chemistry</i> , 2019 , 43, 10821-10825	3.6	9
361	Decarbonylation of phenylacetic acids by high valent transition metal halides. <i>Dalton Transactions</i> , 2019 , 48, 5725-5734	4.3	1
360	Synergistic catalytic action of vanadia-titania composites towards the microwave-assisted benzoin oxidation. <i>Dalton Transactions</i> , 2019 , 48, 3198-3203	4.3	7
359	Novel osmium(II)Bymene complexes containing curcumin and bisdemethoxycurcumin ligands. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 2448-2457	6.8	11
358	Heterotrimetallic complexes of iron and ruthenium based on vinyliminium dithiocarboxylate ligands. <i>Journal of Organometallic Chemistry</i> , 2019 , 886, 9-12	2.3	4
357	Solvent-Dependent Hemilability of (2-Diphenylphosphino)Phenol in a Ru(II) para-Cymene System. <i>Organometallics</i> , 2018 , 37, 1381-1391	3.8	7
356	Activation of CN bonds by high-valent group 6 metal chlorides, including the conversion of an Ediimine into a functionalized imidazolium. <i>New Journal of Chemistry</i> , 2018 , 42, 8503-8511	3.6	4
355	Synthesis and Structural Characterization of Non-Homoleptic Carbamato Complexes of VV and WVI and Their Facile Implantation onto Silica Surfaces. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 1176-1184	2.3	3
354	Structural Characterization of a Fluorido-Amide of Niobium, and Facile CO2 Incorporation Affording a Fluorido-Carbamate. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 999-1006	2.3	3
353	Regioselective Nucleophilic Additions to Diiron Carbonyl Complexes Containing a Bridging Aminocarbyne Ligand: A Synthetic, Crystallographic and DFT Study. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 959-959	2.3	

352	Stable coordination complexes of ⊞diimines with Nb(v) and Ta(v) halides. <i>Dalton Transactions</i> , 2018 , 47, 3346-3355	4.3	12
351	Modifying bis(triflimide) ionic liquids by dissolving early transition metal carbamates. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 5057-5066	3.6	9
350	Synthesis, characterization and cytotoxicity of arene-ruthenium(ii) complexes with acylpyrazolones functionalized with aromatic groups in the acyl moiety. <i>Dalton Transactions</i> , 2018 , 47, 868-878	4.3	22
349	Regioselective Nucleophilic Additions to Diiron Carbonyl Complexes Containing a Bridging Aminocarbyne Ligand: A Synthetic, Crystallographic and DFT Study. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 960-971	2.3	28
348	Amination of Bridging Vinyliminium Ligands in Diiron Complexes: CN Bond Forming Reactions for Amidine-Alkylidene Species. <i>Organometallics</i> , 2018 , 37, 107-115	3.8	13
347	Dioxomolybdenum(VI) compounds with themino acid donor ligands as catalytic precursors for the selective oxyfunctionalization of olefins. <i>Molecular Catalysis</i> , 2018 , 446, 39-48	3.3	5
346	Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3987-4003	2.3	29
345	Synthesis of new coordination complexes of MF5 (M = Nb, Ta), and insights into the Ta(V) reduction. <i>Inorganica Chimica Acta</i> , 2018 , 482, 498-502	2.7	2
344	Effects of methyl groups in a pyrimidine-based flexible ligand on the formation of silver(I) coordination networks. <i>New Journal of Chemistry</i> , 2018 , 42, 13998-14008	3.6	2
343	Iron(III) N,N-Dialkylcarbamate-Catalyzed Formation of Cyclic Carbonates from CO and Epoxides under Ambient Conditions by Dynamic CO Trapping as Carbamato Ligands. <i>ChemSusChem</i> , 2018 , 11, 27	3 8 - <u>3</u> 7-	43 ²⁶
342	Composite Materials Based on (Cymene)Ru(II) Curcumin Additives Loaded on Porous Carbon Adsorbents from Agricultural Residues Display Efficient Antibacterial Activity. <i>ACS Applied Bio Materials</i> , 2018 , 1, 153-159	4.1	4
341	Half-Sandwich Metal Complexes with Diketone-Like Ligands and Their Anticancer Activity. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3521-3536	2.3	22
340	Synthesis and spectroscopic/DFT structural characterization of coordination compounds of Nb(V) and Ti(IV) with bioactive carboxylic acids. <i>Polyhedron</i> , 2018 , 141, 208-214	2.7	2
339	Diimine homologues of cisplatin: synthesis, speciation in DMSO/water and cytotoxicity. <i>New Journal of Chemistry</i> , 2018 , 42, 17453-17463	3.6	7
338	Ubiquity of cis-Halide -flsocyanide Direct Interligand Interaction in Organometallic Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 14554-14563	5.1	5
337	Controlled Dissociation of Iron and Cyclopentadienyl from a Diiron Complex with a Bridging C Ligand Triggered by One-Electron Reduction. <i>Inorganic Chemistry</i> , 2018 , 57, 15172-15186	5.1	17
336	Metal N,N-dialkylcarbamates as easily available catalytic precursors for the carbon dioxide/propylene oxide coupling under ambient conditions. <i>Journal of CO2 Utilization</i> , 2018 , 28, 168-1	73 ^{.6}	13
335	DFT Mechanistic Insights into the Alkyne Insertion Reaction Affording Diiron Evinyliminium Complexes and New Functionalization Pathways. <i>Organometallics</i> , 2018 , 37, 3718-3731	3.8	20

334	Ligand Design for N, O- or N, N-Pyrazolone-Based Hydrazones Ruthenium(II)-Arene Complexes and Investigation of Their Anticancer Activity. <i>Inorganic Chemistry</i> , 2018 , 57, 14123-14133	5.1	36
333	Ruthenium p-cymene complexes with Ediimine ligands as catalytic precursors for the transfer hydrogenation of ethyl levulinate to Evalerolactone. <i>New Journal of Chemistry</i> , 2018 , 42, 17574-17586	3.6	17
332	Synthesis, characterization and behavior in water/DMSO solution of Ru(II) arene complexes with bioactive carboxylates. <i>Journal of Organometallic Chemistry</i> , 2018 , 869, 201-211	2.3	14
331	⊕iimines as Versatile, Derivatizable Ligands in Ruthenium(II) p-Cymene Anticancer Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 6669-6685	5.1	35
330	Versatile coordination of acetazolamide to ruthenium(ii) p-cymene complexes and preliminary cytotoxicity studies. <i>Dalton Transactions</i> , 2018 , 47, 9367-9384	4.3	17
329	Influence of Functionalized Ib-Arene Rings on Ruthenium(II) Curcuminoids Complexes. <i>ChemistrySelect</i> , 2018 , 3, 6696-6700	1.8	5
328	Ruthenium Arene Complexes with Aminoacidato Ligands: New Insights into Transfer Hydrogenation Reactions and Cytotoxic Behaviour. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 3041-3057	2.3	16
327	Ruthenium(II)-arene complexes with dibenzoylmethane induce apoptotic cell death in multiple myeloma cell lines. <i>Inorganica Chimica Acta</i> , 2017 , 454, 139-148	2.7	22
326	Synthesis and characterization of a new alkyne functionalized bis(pyrazolyl)methane ligand and of its Pd(II) complexes: Evaluation of their in vitro cytotoxic activity. <i>Inorganica Chimica Acta</i> , 2017 , 455, 677-682	2.7	4
325	Synthesis and study of the stability of amidinium/guanidinium carbamates of amines and \text{\text{\text{\text{B}mino}}} acids. <i>New Journal of Chemistry</i> , 2017 , 41, 1798-1805	3.6	11
324	Application of metal 🗈 Enganic frameworks. Polymer International, 2017, 66, 731-744	3.3	116
323	Synthesis and structural characterization of mixed halideN,N-diethylcarbamates of group 4 metals, including a case of unusual tetrahydrofuran activation. <i>New Journal of Chemistry</i> , 2017 , 41, 178	1 ³ 1789	10
322	The reactions of the mino acids and the mino acid esters with high valent transition metal halides: synthesis of coordination complexes, activation processes and stabilization of the mmonium acylchloride cations. <i>RSC Advances</i> , 2017 , 7, 10158-10174	3.7	8
321	Unusual activation pathways of amines in the reactions with molybdenum pentachloride. <i>New Journal of Chemistry</i> , 2017 , 41, 4329-4340	3.6	3
320	Dicationic Ruthenium(II)Areneturcumin Complexes Containing Methylated 1,3,5-Triaza-7-phosphaadamantane: Synthesis, Structure, and Cytotoxicity. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 2905-2910	2.3	20
319	A general strategy to add diversity to ruthenium arene complexes with bioactive organic compounds via a coordinated (4-hydroxyphenyl)diphenylphosphine ligand. <i>Dalton Transactions</i> , 2017 , 46, 12001-12004	4.3	26
318	Heteroleptic Copper(I) Complexes of "Scorpionate" Bis-pyrazolyl Carboxylate Ligand with Auxiliary Phosphine as Potential Anticancer Agents: An Insight into Cytotoxic Mode. <i>Scientific Reports</i> , 2017 , 7, 45229	4.9	33
317	NMR Spectroscopy, Heteronuclei, As, Sb, Bi 2017 , 313-317		

316	Ruthenium arene complexes with triphenylphosphane ligands: cytotoxicity towards pancreatic cancer cells, interaction with model proteins, and effect of ethacrynic acid substitution. <i>New Journal of Chemistry</i> , 2017 , 41, 14574-14588	3.6	32
315	Vanadium(v) oxoanions in basic water solution: a simple oxidative system for the one pot selective conversion of l-proline to pyrroline-2-carboxylate. <i>Dalton Transactions</i> , 2017 , 46, 15059-15069	4.3	5
314	Cytotoxic Half-Sandwich Rh(III) and Ir(III) 即iketonates. <i>Inorganic Chemistry</i> , 2017 , 56, 13600-13612	5.1	28
313	Back-Donation in High-Valent d Metal Complexes: Does It Exist? The Case of Nb. <i>Inorganic Chemistry</i> , 2017 , 56, 11266-11274	5.1	20
312	Allowing the direct interaction of N-aryl Ediimines with a high valent metal chloride: one-pot WCl-promoted formation of quinoxalinium salts. <i>Dalton Transactions</i> , 2017 , 46, 12780-12784	4.3	7
311	One pot conversion of acetyl chloride to dehydroacetic acid and its coordination in a ruthenium(II) arene complex. <i>Journal of Organometallic Chemistry</i> , 2017 , 848, 214-221	2.3	6
310	Tuning the cytotoxicity of ruthenium(ii) para-cymene complexes by mono-substitution at a triphenylphosphine/phenoxydiphenylphosphine ligand. <i>Dalton Transactions</i> , 2017 , 46, 16589-16604	4.3	34
309	Arene R uthenium(II) Complexes with Bioactive ortho-Hydroxydibenzoylmethane Ligands: Synthesis, Structure, and Cytotoxicity. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 1800-1806	2.3	21
308	Oxidoperoxidomolybdenum(vi) complexes with acylpyrazolonate ligands: synthesis, structure and catalytic properties. <i>Dalton Transactions</i> , 2017 , 47, 197-208	4.3	11
307	One pot conversion of benzophenone imine into the relevant 2-aza-allenium. <i>Chemical Communications</i> , 2016 , 53, 364-367	5.8	7
306	One-Pot Intermolecular CB Self-Coupling of Dimethyl Sulfoxide Promoted by Molybdenum Pentachloride. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3838-3845	2.3	6
305	The reactivity of tungsten hexachloride with tetrahydrofuran and 2-methoxyethanol. <i>Polyhedron</i> , 2016 , 117, 769-776	2.7	9
304	The chemistry of high valent tungsten chlorides with N-substituted ureas, including urea self-protonation reactions triggered by WCl6. <i>New Journal of Chemistry</i> , 2016 , 40, 8271-8281	3.6	7
303	A crystallographic and DFT study on a NHC complex of niobium oxide trifluoride. <i>Journal of Coordination Chemistry</i> , 2016 , 69, 2766-2774	1.6	10
302	Synthesis, Structure, and Anticancer Activity of Arene-Ruthenium(II) Complexes with Acylpyrazolones Bearing Aliphatic Groups in the Acyl Moiety. <i>Inorganic Chemistry</i> , 2016 , 55, 11770-1178	15.1	56
301	From Sunscreen to Anticancer Agent: Ruthenium(II) Arene Avobenzone Complexes Display Potent Anticancer Activity. <i>Organometallics</i> , 2016 , 35, 3734-3742	3.8	33
300	Preparation of Polyethylene Composites Containing Silver(I) Acylpyrazolonato Additives and SAR Investigation of their Antibacterial Activity. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 29676-2968	 3 7 ·5	18
299	The in vitro antitumor activity of arene-ruthenium(II) curcuminoid complexes improves when decreasing curcumin polarity. <i>Journal of Inorganic Biochemistry</i> , 2016 , 162, 44-51	4.2	40

(2016-2016)

Electron exchange reactions between tungsten hexachloride and nitrogen donors. <i>Polyhedron</i> , 2016 , 115, 30-36	2.7	3
Group 9 and 10 complexes with the bidentate di(1H-indazol-1-yl)methane and di(2H-indazol-2-yl)methane ligands: synthesis and structural characterization. <i>New Journal of Chemistry</i> , 2016 , 40, 5695-5703	3.6	2
Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand. <i>Dalton Transactions</i> , 2016 , 45, 6939-48	4.3	23
Arene Osmium Complexes with Ethacrynic Acid-Modified Ligands: Synthesis, Characterization, and Evaluation of Intracellular Glutathione S-Transferase Inhibition and Antiproliferative Activity. Organometallics, 2016, 35, 1046-1056	3.8	21
Synthesis of Nanocrystalline TiOF2 Embedded in a Carbonaceous Matrix from TiF4 and D-Fructose. <i>Inorganic Chemistry</i> , 2016 , 55, 1816-20	5.1	8
Self-assembly of arene ruthenium acylpyrazolone fragments to tetranuclear metallacycles. Molecular structures and solid-state (15)N CPMAS NMR correlations. <i>Dalton Transactions</i> , 2016 , 45, 397	′4 ⁴ 8 ³ 2	6
DNA and BSA binding, anticancer and antimicrobial properties of Co(II), Co(II/III), Cu(II) and Ag(I) complexes of arylhydrazones of barbituric acid. <i>RSC Advances</i> , 2016 , 6, 4237-4249	3.7	16
Oxidative Dimerization of Triarylamines Promoted by WCl6, Including the Solid State Isolation and the Crystallographic Characterization of a Triphenylammonium Salt. <i>Inorganic Chemistry</i> , 2016 , 55, 887-	.9 3 .1	14
Reactivity of [WCl6] with Ethers: A Joint Computational, Spectroscopic and Crystallographic Study. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3169-3177	2.3	9
Golden Jubilee for Scorpionates. Advances in Organometallic Chemistry, 2016, 175-260	3.8	25
Coordination Compounds of Niobium(IV) Oxide Dihalides Including the Synthesis and the Crystallographic Characterization of NHC Complexes. <i>Inorganic Chemistry</i> , 2016 , 55, 4173-82	5.1	15
The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells. <i>Pharmacological Research</i> , 2016 , 107, 282-290	10.2	43
A ruthenium derivative of quercetin with enhanced cholesterol-lowering activity. <i>RSC Advances</i> , 2016 , 6, 39636-39641	3.7	9
The reactivity of niobium and tantalum pentahalides with imines. <i>Polyhedron</i> , 2016 , 115, 99-104	2.7	8
Linkage Isomerism in Silver Acylpyrazolonato Complexes and Correlation with Their Antibacterial Activity. <i>Inorganic Chemistry</i> , 2016 , 55, 5453-66	5.1	27
Synthesis of a highly reactive form of WOCl, its conversion into nanocrystalline mono-hydrated WO and coordination compounds with tetramethylurea. <i>Dalton Transactions</i> , 2016 , 45, 15342-15349	4.3	6
Growing the Molecular Architecture at Alkynyl(amino)carbene Ligands in Diiron \(\bar{\pi}\)-Aminocarbyne Complexes. European Journal of Inorganic Chemistry, 2016 , 2016, 4820-4828	2.3	8
Photochemical Alkyne Insertions into the IronII hiocarbonyl Bond of [Fe2(CS)(CO)3(Cp)2]. Organometallics, 2016, 35, 2630-2637	3.8	13
	Corup 9 and 10 complexes with the bidentate dif(1H-indazol-1-yl)methane and dif2H-indazol-2-yl)methane ligands: synthesis and structural characterization. New Journal of Chemistry, 2016, 40, 5695-5703 Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand. Dalton Transactions, 2016, 45, 6939-48 Arene Osmium Complexes with Ethacrynic Acid-Modified Ligands: Synthesis, Characterization, and Evaluation of Intracellular Clutathione 5-Transferase Inhibition and Antiproliferative Activity. Organometallics, 2016, 35, 1046-1056 Synthesis of Nanocrystalline TiOF2 Embedded in a Carbonaceous Matrix from TiF4 and D-Fructose. Inorganic Chemistry, 2016, 55, 1816-20 Self-assembly of arene ruthenium acylpyrazolone fragments to tetranuclear metallacycles. Molecular structures and solid-state (15)N CPMAS NMR correlations. Dalton Transactions, 2016, 45, 397 DNA and BSA binding, anticancer and antimicrobial properties of Co(II), Co(II/III), Cu(II) and Ag(I) complexes of arylhydrazones of barbituric acid. RSC Advances, 2016, 6, 4237-4249 Oxidative Dimerization of Triarylamines Promoted by WCI6, Including the Solid State Isolation and the Crystallographic Characterization of a Triphenylammonium Salt. Inorganic Chemistry, 2016, 55, 887-887-882-819-819-819-819-819-819-819-819-819-819	27 Group 9 and 10 complexes with the bidentate di(1H-indazol-1-yl)methane and di(2H-indazol-2-yl)methane ligands: synthesis and structural characterization. New Journal of Chemistry, 2016, 40, 5695-5703 Coordination complexes of niobium and tantalum pentahalides with a bulky NHC ligand. Dalton Transactions, 2016, 45, 6939-48 Arene Osmium Complexes with Ethacrynic Acid-Modified Ligands: Synthesis, Characterization, and Evaluation of Intracellular Clutathione S-Transferase Inhibition and Antiproliferative Activity. Organometallics, 2016, 35, 1046-1056 Synthesis of Nanocrystalline TiOF2 Embedded in a Carbonaceous Matrix from TiF4 and D-Fructose. Intraganic Chemistry, 2016, 55, 1816-20 Self-assembly of arene ruthenium acylpyrazolane fragments to tetranuclear metallacycles. Molecular structures and solid-state (15)N CPMAS NMR correlations. Dalton Transactions, 2016, 45, 397482 DNA and BSA binding, anticancer and antimicrobial properties of Co(II), Co(II/III), Cu(II) and Ag(II) complexes of arylhydrazones of barbituric acid. RSC Advances, 2016, 6, 4237-4249 Oxidative Dimerization of Triarylamines Promoted by WCI6, Including the Solid State Isolation and the Crystallographic Characterization of a Triphenylammonium Salt. Inorganic Chemistry, 2016, 55, 887-951 Reactivity of [WCI6] with Ethers: A Joint Computational, Spectroscopic and Crystallographic Study. European Journal of Inorganic Chemistry, 2016, 2016, 3169-3177 Colden Jubilee for Scorpionates. Advances in Organometallic Chemistry, 2016, 175-260 3.8 Coordination Compounds of Niobium(IV) Oxide Dihalides Including the Synthesis and the Crystallographic Characterization of PNHC Complexes. Inorganic Chemistry, 2016, 55, 4173-82 The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3, 5) and the Crystallographic Characterization of PNHC Complexes. Inorganic Chemistry, 2016, 55, 4173-82 The reactivity of niobium and tantalum pentahalides with Imines. Polyhedron, 2016, 115, 99-104 Linkage Isomerism in Silver Acylpyrazolonato Complexes a

280	Synthesis and Antiproliferative Activity of New Ruthenium Complexes with Ethacrynic-Acid-Modified Pyridine and Triphenylphosphine Ligands. <i>Inorganic Chemistry</i> , 2015 , 54, 6504	-∮2 ¹	51
279	CN Coupling of Isocyanide Ligands Promoted by Acetylide Addition to Diiron Aminocarbyne Complexes. <i>Organometallics</i> , 2015 , 34, 3658-3664	3.8	13
278	The chlorinating behaviour of WCllbowards &minoacids. Dalton Transactions, 2015, 44, 8729-38	4.3	13
277	Synthesis of novel lanthanide acylpyrazolonato ligands with long aliphatic chains and immobilization of the Tb complex on the surface of silica pre-modified via hydrophobic interactions. <i>Dalton Transactions</i> , 2015 , 44, 14887-95	4.3	10
276	Is bond stretch isomerism in mononuclear transition metal complexes a real issue? The misleading case of the MoCl5/tetrahydropyran reaction system. <i>Dalton Transactions</i> , 2015 , 44, 12653-9	4.3	6
275	Carbon monoxide-isocyanide coupling promoted by acetylide addition to a diiron complex. <i>Chemical Communications</i> , 2015 , 51, 8101-4	5.8	16
274	The Chemistry of Cat Litter: Activities for High School Students To Evaluate a Commercial Product Properties and Claims Using the Tools of Chemistry. <i>Journal of Chemical Education</i> , 2015 , 92, 1359-1363	2.4	1
273	MoCl5 as an effective chlorinating agent towards \(\text{\text{\text{Bmino}}}\) acids: synthesis of \(\text{\text{\text{\text{\text{Bmmonium-acylchloride}}}}\) salts and \(\text{\text{\text{Bmino-acylchloride}}}\) complexes. \(\text{Dalton Transactions}\), 2015, 44, 10030	- 4 ·3	7
272	Synthesis of Emino acidato derivatives of niobium and tantalum pentahalides and their conversion into iminium salts. <i>Inorganic Chemistry</i> , 2015 , 54, 4047-55	5.1	16
271	Novel Coordination Polymers with (Pyrazolato)-Based Tectons: Catalytic Activity in the Peroxidative Oxidation of Alcohols and Cyclohexane. <i>Crystal Growth and Design</i> , 2015 , 15, 2303-2317	3.5	51
270	Implementing an Equilibrium Law Teaching Sequence for Secondary School Students To Learn Chemical Equilibrium. <i>Journal of Chemical Education</i> , 2015 , 92, 1008-1015	2.4	9
269	Arylhydrazones of barbituric acid: synthesis, coordination ability and catalytic activity of their CoII, CoII/III and CuII complexes toward peroxidative oxidation of alkanes. <i>RSC Advances</i> , 2015 , 5, 84142-8415	5 2 .7	17
268	Molybdenum(V) and molybdenum(IV) coordination compounds from the reactions of MoCl5 with sulfones. <i>Polyhedron</i> , 2015 , 100, 400-403	2.7	3
267	The versatile chemistry of niobium pentachloride with aliphatic amines: Aminolysis, metal reduction and Cℍ activation. <i>Polyhedron</i> , 2015 , 100, 192-198	2.7	12
266	Structural characterization of Emino acid complexes of molybdates: a spectroscopic and DFT study. <i>RSC Advances</i> , 2015 , 5, 9010-9018	3.7	8
265	MnII and CuII complexes with arylhydrazones of active methylene compounds as effective heterogeneous catalysts for solvent- and additive-free microwave-assisted peroxidative oxidation of alcohols. <i>RSC Advances</i> , 2015 , 5, 25979-25987	3.7	24
264	Organometallic rhodium(III) and iridium(III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands. <i>Dalton Transactions</i> , 2015 , 44, 20523-31	4.3	46
263	Syntheses, structures, and antimicrobial activity of new remarkably light-stable and water-soluble tris(pyrazolyl)methanesulfonate silver(I) derivatives of N-methyl-1,3,5-triaza-7-phosphaadamantane salt - [mPTA]BF4. <i>Inorganic Chemistry</i> , 2015 , 54, 434-40	5.1	41

262	The reactivity of MoCl5 with molecules containing the alcohol functionality. <i>Polyhedron</i> , 2015 , 85, 369-3	72.5 ₇	10
261	Dinuclear (Ib-arene) ruthenium(II) acylpyrazolone complexes: Synthesis, characterization and cytotoxicity. <i>Journal of Organometallic Chemistry</i> , 2015 , 791, 1-5	2.3	15
260	Recent advances in acylpyrazolone metal complexes and their potential applications. <i>Coordination Chemistry Reviews</i> , 2015 , 303, 1-31	23.2	75
259	Different outcomes in the reactions of WCl6 with carboxylic acids. <i>Polyhedron</i> , 2015 , 99, 141-146	2.7	10
258	A crystallographically characterized salt of self-generated N-protonated tetraethylurea. <i>Chemical Communications</i> , 2015 , 51, 1323-5	5.8	14
257	Novel composite plastics containing silver(I) acylpyrazolonato additives display potent antimicrobial activity by contact. <i>Chemistry - A European Journal</i> , 2015 , 21, 836-50	4.8	31
256	Revisitation of the PCl5-chlorination reaction of Hamino acids: Spectroscopic and DFT insights, and synthesis of the L-proline-derived 2,5-diketopiperazine. <i>Inorganica Chimica Acta</i> , 2015 , 427, 150-154	2.7	7
255	Tribenzylamine C-H activation and intermolecular hydrogen transfer promoted by WCl6. <i>Inorganic Chemistry</i> , 2014 , 53, 3832-8	5.1	15
254	Reactions of TaF5 with activated arenes. Synthesis of [4-(OH)-3-(OCH3)C6H3CH(OH)][4-(OH)-3-(OCH3)C6H3CH(OH)][4-(OH)-3-(OCH3)C6H3CHO][TaF6], a rare example of protonated aldehyde. <i>Polyhedron</i> , 2014 , 70, 6-10	2.7	5
253	Arene-ruthenium(II) acylpyrazolonato complexes: apoptosis-promoting effects on human cancer cells. <i>Journal of Medicinal Chemistry</i> , 2014 , 57, 4532-42	8.3	67
252	Bis(pyrazolato)-Based Metal Drganic Frameworks Fabricated with 4,4?-Bis((3,5-dimethyl-1H-pyrazol-4-yl)methyl)biphenyl and Late Transition Metals. <i>Crystal Growth and Design</i> , 2014 , 14, 3142-3152	3.5	15
251	A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education. <i>Journal of Chemical Education</i> , 2014 , 91, 59-65	2.4	14
250	Complexes of Copper(I) Thiocyanate with Monodentate Phosphine and Pyridine Ligands and the P(,N)-Donor Diphenyl(2-pyridyl)phosphine. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 6104-61	13.6	14
249	New Rull (arene) complexes with halogen-substituted bis- and tris(pyrazol-1-yl)borate ligands. <i>Chemistry - A European Journal</i> , 2014 , 20, 3689-704	4.8	19
248	Synthesis, structure, and antiproliferative activity of ruthenium(II) arene complexes with N,O-chelating pyrazolone-based 帐etoamine ligands. <i>Inorganic Chemistry</i> , 2014 , 53, 13105-11	5.1	45
247	The interaction of molybdenum pentachloride with O- and S-heterocycles. <i>Dalton Transactions</i> , 2014 , 43, 495-504	4.3	24
246	Synthesis of di- and tetranuclear oxido-molybdenum(V) complexes containing p-toluenesulfonates as ligands: a joint spectroscopic, crystallographic and computational study. <i>Dalton Transactions</i> , 2014 , 43, 10157-63	4.3	5
245	A structurally-characterized NbCl5-NHC adduct. <i>Chemical Communications</i> , 2014 , 50, 4472-4	5.8	23

244	Oxido-molybdenum complexes obtained by Cl/O interchange between MoCl5 and carboxylic acids: a crystallographic, spectroscopic and computational study. <i>Dalton Transactions</i> , 2014 , 43, 16416-23	4.3	7
243	Ruthenium(II) Arene RAPTA Type Complexes Containing Curcumin and Bisdemethoxycurcumin Display Potent and Selective Anticancer Activity. <i>Organometallics</i> , 2014 , 33, 3709-3715	3.8	136
242	Synthesis, characterization, and antitumor activity of water-soluble (arene)ruthenium(II) derivatives of 1,3-dimethyl-4-acylpyrazolon-5-ato ligands. First example of Ru(arene)(ligand) antitumor species involving simultaneous Ru-N7(guanine) bonding and ligand intercalation to DNA. <i>Inorganic</i>	5.1	40
241	Chemistry, 2014 , 53, 3668-77 Coupling of Isocyanide and FAminocarbyne Ligands in Diiron Complexes Promoted by Hydride Addition. <i>Organometallics</i> , 2014 , 33, 3990-3997	3.8	16
240	Evaluation of (arene)Ru(II) complexes of curcumin as inhibitors of dipeptidyl peptidase IV. <i>Biochimie</i> , 2014 , 99, 146-52	4.6	27
239	Organometallic ruthenium(II) scorpionate as topo IIIInhibitor; in vitro binding studies with DNA, HPLC analysis and its anticancer activity. <i>Journal of Organometallic Chemistry</i> , 2014 , 771, 47-58	2.3	34
238	A simple route to thermally-stable salts of pyrrolidinium-2-carbonylchloride. RSC Advances, 2014 , 4, 608	37 3 8 7 608	882
237	Synthesis, Crystal Structure, and Biological Study of PtII Complexes with 4-Acyl-5-pyrazolones. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1249-1259	2.3	9
236	Effect of novel 1-phenyl-3-methyl-4-acylpyrazolones on iron chelation and Fenton reaction. <i>Free Radical Biology and Medicine</i> , 2014 , 75 Suppl 1, S29-30	7.8	1
235	Synthesis, Characterization, and Crystal Structures of Scorpionate Complexes with the Hydrotris[3-(2?-thienyl)pyrazol-1-yl]borate Ligand. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 546-558	2.3	10
234	Electrochemical Properties of (h5-C5Me5) R hodium and I ridium Complexes Containing Bis(pyrazolyl)alkane Ligands. <i>Portugaliae Electrochimica Acta</i> , 2014 , 32, 253-257	2.4	2
233	Boron Functionalization and Unusual BII Bond Activation in Rhodium(III) and Iridium(III) Complexes with Diphenylbis(pyrazolylborate) Ligands (Ph2Bp). <i>Organometallics</i> , 2013 , 32, 3895-3902	3.8	7
232	Dioxomolybdenum(VI) Complexes with Acylpyrazolonate Ligands: Synthesis, Structures, and Catalytic Properties. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 3352-3361	2.3	51
231	Synthesis, X-ray characterization, and reactivity of ե minoacidato ethoxide complexes of niobium(V) and tantalum(V). <i>Inorganic Chemistry</i> , 2013 , 52, 4017-25	5.1	17
230	Cytotoxicity of Ruthenium rene Complexes Containing Retoamine Ligands. <i>Organometallics</i> , 2013 , 32, 309-316	3.8	54
229	The reactivity of molybdenum pentachloride with ethers: routes to the synthesis of Mo(IV)Cl4 adducts, Mo(V) chlorido-alkoxides and Mo(V) oxydo-chlorides. <i>Dalton Transactions</i> , 2013 , 42, 15226-34	4.3	17
228	Coordination complexes of NbX5 ($X = F$, Cl) with (N,O)- and (O,O)-donor ligands and the first X-ray characterization of a neutral NbF5 adduct. <i>Dalton Transactions</i> , 2013 , 42, 13054-64	4.3	18
227	Ligand-interchange reactions between M(IV) (M = Ti, V) oxide bis-acetylacetonates and halides of high-valent group 4 and 5 metals. A synthetic and electrochemical study. <i>Dalton Transactions</i> , 2013 ,	4.3	8

226	Reactions of molybdenum pentachloride with oxygen and nitrogen donor ligands. <i>Polyhedron</i> , 2013 , 61, 188-194	2.7	14
225	Synthesis, properties, and antitumor effects of a new mixed phosphine gold(I) compound in human colon cancer cells. <i>Journal of Inorganic Biochemistry</i> , 2013 , 124, 78-87	4.2	20
224	The interaction of molybdenum pentachloride with carbonyl compounds. <i>Dalton Transactions</i> , 2013 , 42, 2477-87	4.3	21
223	Lactam/MoCl5 interaction in CH2Cl2: synthesis and X-ray characterization of protonated Evalerolactam salts. <i>RSC Advances</i> , 2013 , 3, 10007	3.7	10
222	A crystallographic and spectroscopic study on the reactions of WCl6 with carbonyl compounds. <i>Dalton Transactions</i> , 2013 , 42, 5635-48	4.3	30
221	Ring opening polymerization of rac-lactide by group 4 tetracarbamato complexes: activation, propagation and role of the metal. <i>Dalton Transactions</i> , 2013 , 42, 2792-802	4.3	31
220	Oligo-nuclear silver thiocyanate complexes with monodentate tertiary phosphine ligands, including novel 'cubane' and 'step' tetramer forms of AgSCN: PR3 (1:1)4. <i>Dalton Transactions</i> , 2013 , 42, 277-91	4.3	22
219	Fluoride adducts of niobium(V): Activation reactions and alkene polymerizations. <i>Inorganica Chimica Acta</i> , 2013 , 399, 214-218	2.7	4
218	Synthesis of diiron Ellenyl complexes by electrophilic addition to propen-2-yl-dimetallacyclopentenone species: A joint experimental and DFT study. <i>Journal of Organometallic Chemistry</i> , 2013 , 731, 61-66	2.3	2
217	Mixed-ligand Cu(II)-vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. <i>European Journal of Medicinal Chemistry</i> , 2013 , 60, 216-	32 ^{6.8}	96
216	Group 11 complexes with the bidentate di(1H-indazol-1-yl)methane and di(2H-indazol-2-yl)methane) ligands. <i>CrystEngComm</i> , 2013 , 15, 3892	3.3	12
215	Enlarging an Isoreticular Family: 3,3?,5,5?-Tetramethyl-4,4?-bipyrazolato-Based Porous Coordination Polymers. <i>Crystal Growth and Design</i> , 2013 , 13, 3087-3097	3.5	35
214	Stable [M2F11][(M = Nb, Ta) Salts of Protonated 1,3-Dimethoxybenzene. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5755-5761	2.3	18
213	CB and CBe Bond Formation at Bridging Vinyliminium Ligands in Diiron Complexes. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5145-5152	2.3	8
212	Long-lived radical cation salts obtained by interaction of monocyclic arenes with niobium and tantalum pentahalides at room temperature: EPR and DFT studies. <i>Chemistry - A European Journal</i> , 2013 , 19, 13962-9	4.8	25
211	The Reactivity of Molybdenum Pentachloride with Ester Molecules: Ester Activation, Metal Reduction, and Synthesis of 1D Coordination Polymers. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 1371-1380	2.3	18
210	Oxido- and Sulfidoniobium(V) N,N-Diethylcarbamates: Synthesis, Characterization and DFT Study. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 3112-3118	2.3	10
209	A novel series of antitumor ruthenium beta-diketonato compounds. <i>FASEB Journal</i> , 2013 , 27, 975.5	0.9	

208	Di- and polynuclear silver(I) derivatives with a new multitopic pyrimidine-base tri-thioether ligand. <i>Inorganic Chemistry Communication</i> , 2012 , 24, 20-23	3.1	6
207	Room-temperature polymerization of the pinene by niobium and tantalum halides. <i>Catalysis Today</i> , 2012 , 192, 177-182	5.3	11
206	Insights on the mechanistic features of catalytic oxidations of simple and conjugated olefins promoted by VO(acac)2/H2O2 system, in acetonitrile: A computational study. <i>Catalysis Today</i> , 2012 , 192, 56-62	5.3	17
205	Convenient synthesis of fluoride-alkoxides of Nb(V) and Ta(V): a spectroscopic, crystallographic and computational study. <i>Dalton Transactions</i> , 2012 , 41, 12898-906	4.3	16
204	Interaction of niobium and tantalum pentahalides with O-donors: coordination chemistry and activation reactions. <i>Chemical Communications</i> , 2012 , 48, 635-53	5.8	80
203	Water-soluble heterometallic copper(II)-sodium complex comprising arylhydrazone of barbituric acid as a ligand. <i>Inorganic Chemistry Communication</i> , 2012 , 22, 187-189	3.1	44
202	In vitro characteristics of 1-phenyl-3-methyl-4-acylpyrazol-5-ones iron chelators. <i>Biochimie</i> , 2012 , 94, 125-31	4.6	7
201	Arene-Ru(II) complexes of curcumin exert antitumor activity via proteasome inhibition and apoptosis induction. <i>ChemMedChem</i> , 2012 , 7, 2010-20	3.7	48
200	Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 1072-81	8.3	175
199	Antibacterial action of 4,4'-bipyrazolyl-based silver(I) coordination polymers embedded in PE disks. <i>Inorganic Chemistry</i> , 2012 , 51, 9775-88	5.1	50
198	Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(I) thiocyanate adducts with bulky monodentate tertiary phosphine ligands. <i>Dalton Transactions</i> , 2012 , 41, 7513-25	4.3	29
197	Synthesis of a Photoluminescent and Triboluminescent Copper(I) Compound: An Experiment for an Advanced Inorganic Chemistry Laboratory. <i>Journal of Chemical Education</i> , 2012 , 89, 652-655	2.4	22
196	The Question of cis versus trans Configuration in Octahedral Metal Diketonates: An In-Depth Investigation on Diorganobis(4-acyl-5-pyrazolonato)tin(IV) Complexes. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 1369-1379	2.3	12
195	Unprecedented Transformation of Diiron Bridging Vinyliminium Ligands into Carboxyamido- and Alkylphosphonate-Vinylalkylidenes. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 2456-2463	2.3	8
194	Activation reactions of 1,1-dialkoxoalkanes and unsaturated O-donors by titanium tetrafluoride. <i>Inorganica Chimica Acta</i> , 2012 , 385, 135-139	2.7	6
193	C-N bond-forming self-condensation of amide promoted by MoCl5 at room temperature. <i>Inorganic Chemistry</i> , 2011 , 50, 3846-8	5.1	21
192	Pro-porous coordination polymers of the 1,4-bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene ligand with late transition metals. <i>Inorganic Chemistry</i> , 2011 , 50, 11506-13	5.1	28
191	Synthesis, antimicrobial and antiproliferative activity of novel silver(I) tris(pyrazolyl)methanesulfonate and 1,3,5-triaza-7-phosphadamantane complexes. <i>Inorganic Chemistry</i> , 2011 , 50, 11173-83	5.1	71

190	Addition of alkynes at bridging vinyliminium ligands in diiron complexes: Unprecedented diene formation by enyne-like metathesis. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 4051-4056	2.3	8
189	Coordination Chemistry of the (I&-p-Cymene)ruthenium(II) Fragment with Bis-, Tris-, and Tetrakis(pyrazol-1-yl)borate Ligands: Synthesis, Structural, Electrochemical, and Catalytic Diastereoselective Nitroaldol Reaction Studies. <i>Organometallics</i> , 2011 , 30, 1616-1626	3.8	46
188	Electrochemical, EPR and computational results on [Fe2Cp2(CO)2]-based complexes with a bridging hydrocarbyl ligand. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 3551-3556	2.3	8
187	Synthesis, spectroscopic and structural characterization of some novel adducts of copper(II) salts with unidentate nitrogen bases. <i>Inorganica Chimica Acta</i> , 2011 , 375, 31-40	2.7	15
186	The reactivity of NbX5 (X=F, Cl) with lactons, lactams, and the synthesis of the first nucleobase-containing niobium complex. <i>Inorganica Chimica Acta</i> , 2011 , 376, 123-128	2.7	13
185	Ruthenium(II) Arene Complexes Bearing Tris(pyrazolyl)methanesulfonate Capping Ligands. Electrochemistry, Spectroscopic, and X-ray Structural Characterization. <i>Organometallics</i> , 2011 , 30, 6180-	-₫188	20
184	Binuclear diorganotin(IV) complexes with bis(O,O?-4-acyl-5-pyrazolonato) bis(bidentate) ligands. <i>Inorganica Chimica Acta</i> , 2011 , 366, 388-393	2.7	4
183	Novel triorganotin(IV) complexes of 閸iketonates bearing two heterocycles in their structures. <i>Inorganica Chimica Acta</i> , 2011 , 367, 98-107	2.7	4
182	Easily available niobium(V) mixed chloro-alkoxide complexes as catalytic precursors for ethylene polymerization. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 1664-1670	2.5	13
181	Easily accessible oxygen-containing derivatives of niobium pentachloride as catalytic precursors for ethylene polymerization. <i>Polymer International</i> , 2011 , 60, 1722-1727	3.3	10
180	CH Activation in Diiron Bridging Vinyliminium Ligands: Reaction with CS2 to Form New Zwitterionic Complexes Acting as Organometallic Ligands. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 1260-1268	2.3	13
179	Synthesis, characterization and behaviour in solution of organotin complexes based on azole ligands. Single crystal X-ray study of dichlorodimethylbis(1,2,3-benzotriazole)tin(IV). <i>Inorganic Chemistry Communication</i> , 2011 , 14, 133-136	3.1	5
178	Synthesis, characterization, crystal structure and preliminary reactivity behaviour of new heteropolytopic ligands based on the 1,3,5-triazine spacer and pyrazolyl, tris-pyrazolylmethyl and tris-pyrazolylethoxy bonding fragments. <i>Dalton Transactions</i> , 2011 , 40, 4941-53	4.3	8
177	Reversible Reductive Dimerization of Diiron Evinyl Complex via CE Coupling: Characterization and Reactivity of the Intermediate Radical Species. <i>Organometallics</i> , 2011 , 30, 4115-4122	3.8	16
176	Ethylene Polymerization by Niobium(V)N,N-Dialkylcarbamates Activated with Aluminum Co-catalysts. <i>Organometallics</i> , 2011 , 30, 1682-1688	3.8	24
175	Novel bis(聞iketonato)diorganotin(IV) derivatives containing bulky 4-acyl-5-pyrazolonato ligands: Influence of the steric hindrance of the acyl moiety on the solid state structures of tin complexes and their behaviour in solution. <i>Inorganica Chimica Acta</i> , 2011 , 367, 73-84	2.7	7
174	Cobalt, nickel, copper and cadmium coordination polymers containing the bis(1,2,4-triazolyl)methane ligand. <i>Inorganica Chimica Acta</i> , 2011 , 373, 32-39	2.7	9
173	Room-temperature long-lived [Nb2F11] Balts of radical cations of simple arenes: EPR, UV Vis and DFT results. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 1294-1300	2.3	17

Assembly and incorporation of a CO2Me group into a bridging vinyliminium ligand in a diiron complex. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 1483-1486	2.3	4
Further insights into the chemistry of niobium and tantalum pentahalides with 1,2-dialkoxyalkanes: Synthesis of bromo- and iodoalkoxides, spectroscopic and computational studies. <i>Polyhedron</i> , 2011 , 30, 1412-1419	2.7	12
Non-classical anticancer agents: synthesis and biological evaluation of zinc(II) heteroleptic complexes. <i>Dalton Transactions</i> , 2010 , 39, 4205-12	4.3	73
Addition of Alkynes to Zwitterionic Winyliminium Diiron Complexes: New Selenophene (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. <i>Organometallics</i> , 2010 , 29, 1797-1	80 ⁸ 5	17
Solid-state (15)N CPMAS NMR and computational analysis of ligand hapticity in rhodium(Idiene) poly(pyrazolyl)borate complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 11205-15	5.1	16
Structures and unusual rearrangements of coordination adducts of MX(5) (M = Nb, Ta; X = F, Cl) with simple diethers. A crystallographic, spectroscopic, and computational study. <i>Inorganic Chemistry</i> , 2010 , 49, 339-51	5.1	47
Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes. <i>Inorganic Chemistry</i> , 2010 , 49, 10543-56	5.1	15
Cationic diiron and diruthenium Fallenyl complexes: synthesis, X-ray structures and cyclization reactions with ethyldiazoacetate/amine affording unprecedented butenolide- and furaniminium-substituted bridging carbene ligands. <i>Dalton Transactions</i> , 2010 , 39, 10866-75	4.3	7
[3+2+1] cycloaddition involving alkynes, CO and bridging vinyliminium ligands in diiron complexes: a dinuclear version of the DEz reaction?. <i>Chemical Communications</i> , 2010 , 46, 3327-9	5.8	22
Syntheses, structures and spectroscopy of uni- and bi-dentate nitrogen base complexes of silver(I) trifluoromethanesulfonate. <i>Dalton Transactions</i> , 2010 , 39, 908-22	4.3	31
A systematic study on the activation of simple polyethers by MoCl5 and WCl6. <i>Dalton Transactions</i> , 2010 , 39, 5367-76	4.3	29
Halo-complexes of titanium(III): The thermochromic behaviour of [NBu4][TiCl4(THF)2]. <i>Inorganica Chimica Acta</i> , 2010 , 363, 3637-3639	2.7	3
19F NMR spectroscopy as useful tool for determining the structure in solution of coordination compounds of MF5 (M = Nb, Ta). <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 21-28	2.1	39
Preparation and Reactivity of Mono- and Dinuclear Derivatives of Niobium and Tantalum Pentahalides with Alkyl Aryl Ethers. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 767-774	2.3	21
Deprotonation of Bridging Vinyliminium Ligands: New Route to Aminobutadienylidene Diiron and Diruthenium Complexes. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 3012-3021	2.3	6
Long-lived radical cations of monocyclic arenes at room temperature obtained by NbF5 acting as an oxidizing agent and counterion precursor. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5268-72	16.4	48
Synthesis, structural and spectroscopic characterization and biomimetic properties of new copper, manganese, zinc complexes: identification of possible superoxide-dismutase mimics bearing hydroxyl radical generating/scavenging abilities. <i>Journal of Inorganic Biochemistry</i> , 2010 , 104, 820-30	4.2	34
Characterization and thermal activation of adducts of Group 4 tetrahalides with 1,2-dialkoxyalkanes. <i>Inorganica Chimica Acta</i> , 2010 , 363, 3670-3673	2.7	6
	complex. Journal of Organometallic Chemistry, 2011, 696, 1483-1486 Further insights into the chemistry of niobium and tantalum pentahalides with 1,2-dialkoxyalkanes: synthesis of bromo- and iodoalkoxides, spectroscopic and computational studies. Polyhedron, 2011, 30, 1412-1419 Non-classical anticancer agents: synthesis and biological evaluation of zinc(III) heteroleptic complexes. Dalton Transactions, 2010, 39, 4205-12 Addition of Alkynes to Zwitterionic Winyliminium Diiron Complexes: New Selenophene (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. Organometallics, 2010, 29, 1797-190 (Thiophene) and Complexes. Inorganic Chemistry, 2010, 49, 11205-15 Structures and unusual rearrangements of coordination adducts of MX(S) (M = Nb, Ta; X = F, Cl) with simple diethers. A crystallographic, spectroscopic, and computational study. Inorganic Chemistry, 2010, 49, 10543-56 Cationic diiron and diruthenium Ballenyl complexes: synthesis, X-ray structures and cyclization reactions with ethyldiazoacetate/amine affording unprecedented butenolide- and furnaminium-substituted bridging carbene ligands. Dalton Transactions, 2010, 39, 10866-75 [3+2+1] cycloaddition involving alkynes, CO and bridging vinyliminium ligands in diiron complexes: a dinuclear version of the DBz reaction?. Chemical Communications, 2010, 46, 3327-9 Syntheses, structures and spectroscopy of uni- and bi-dentate nitrogen base complexes of silver(I) trifluoromethanesulfonate. Dalton Transactions, 2010, 39, 908-22 A systematic	Further Insights into the chemistry of niobium and tantalum pentahalides with 1,2-dialkoxyalkaness synthesis of bromo- and iodoalkoxides, spectroscopic and computational studies. <i>Polyhedron</i> , 2011, 30, 1412-1419 Non-classical anticancer agents: synthesis and biological evaluation of zinc(II) heteroleptic complexes. <i>Dalton Transactions</i> , 2010, 39, 4205-12 Addition of Alkynes to Zwitterionic Byingliminium Diiron Complexes: New Selenophene (Thiophene) and Vinyl Chalcogenide Functionalized Bridging Ligands. <i>Organometallics</i> , 2010, 29, 1797-1805 Solid-state (15)N CPMAS NMR and computational analysis of ligand hapticity in rhodium(II) diene) poly(pyrazolyl)borate complexes. <i>Inorganic Chemistry</i> , 2010, 49, 31205-15 Structures and unusual rearrangements of coordination adducts of MX(5) (M = Nb, Ta; X = F, Cl) with simple diethers. A crystallographic, spectroscopic, and computational study. <i>Inorganic Chemistry</i> , 2010, 49, 319-51 Synthesis and coordination chemistry of two N2-donor chelating di(Indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes. <i>Inorganic Chemistry</i> , 2010, 49, 10543-56 Cationic diiron and diruthenium Ballenyl complexes: synthesis, X-ray structures and cyclization reactions with ethyldiazoacetate/amine affording unprecedented butenolide- and furaniminium-substituted bridging carbene ligands. <i>Dalton Transactions</i> , 2010, 39, 10866-75 33-24-11 cycloaddition involving alkynes, CO and bridging vinyliminium ligands in diiron complexes: a dinuclear version of the Dtk reaction?. <i>Chemical Communications</i> , 2010, 46, 3327-9 A systematic study on the activation of simple polyethers by MoCl5 and WCl6. <i>Dalton Transactions</i> , 2010, 39, 5367-76 Halo-complexes of titanium(III): The thermochromic behaviour of [NBu4][TitCl4(THF)2]. <i>Inorganica Chimica Acta</i> , 2010, 363, 3637-3639 19F NMR spectroscopy as useful tool for determining the structure in solution of coordination compounds of MF5 (M = Nb, Ta). <i>Journal of Inorganic Chemistry</i> , 2010, 2010, 2010,

(2008-2010)

154	Syntheses, structures, and spectroscopy of mono- and polynuclear lanthanide complexes containing 4-acyl-pyrazolones and diphosphineoxide. <i>Inorganica Chimica Acta</i> , 2010 , 363, 4038-4047	2.7	32	
153	Synthesis and characterization of novel oxovanadium(IV) complexes with 4-acyl-5-pyrazolone donor ligands: Evaluation of their catalytic activity for the oxidation of styrene derivatives. <i>Applied Catalysis A: General</i> , 2010 , 378, 211-220	5.1	47	
152	Bridging Vinyliminium- and Enaminoalkylidenediiron Complexes as Organometallic Ligands. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 1268-1274	2.3	5	
151	Magnesium (II) poly(pyrazolyl)borate derivatives	2.7	4	
150	A sterically hindered tetrakis(pyrazolyl)borate: Synthesis, characterization and coordinative behaviour. <i>Inorganica Chimica Acta</i> , 2009 , 362, 4593-4598	2.7	3	
149	Synthesis, variable temperature NMR investigations and solid state characterization of novel octafluorofluorene compounds. <i>Journal of Fluorine Chemistry</i> , 2009 , 130, 341-347	2.1	4	
148	Epoxide ring opening and insertion into the MIX bond of niobium and tantalum pentahalides: Synthesis of dihalide-tris(2-haloalcoholato) complexes. <i>Polyhedron</i> , 2009 , 28, 1235-1240	2.7	18	
147	Inhibitory effect of beta-diketones and their metal complexes on TNF-alpha induced expression of ICAM-1 on human endothelial cells. <i>Bioorganic and Medicinal Chemistry</i> , 2009 , 17, 6166-72	3.4	30	
146	Functionalized Ferrocenes from [3+2] Cycloadditions in Bridging Vinylalkylidene Diiron Complexes. <i>Organometallics</i> , 2009 , 28, 3465-3472	3.8	18	
145	The reactivity of 1,1-dialkoxyalkanes with niobium and tantalum pentahalides. Formation of coordination compounds, C-H and C-C bond activation and the X-ray structure of the stable carboxonium species [Me(2)C=CHC(=OMe)Me][NbCl(5)(OMe)]. Dalton Transactions, 2009, 8096-106	4.3	32	
144	Switching between kappa(2) and kappa(3) bis(pyrazol-1-yl)acetate ligands by tuning reaction conditions: synthesis, spectral, electrochemical, structural, and theoretical studies on arene-Ru(II) derivatives of bis(azol-1-yl)acetate ligands. <i>Inorganic Chemistry</i> , 2009 , 48, 6096-108	5.1	31	
143	Fragmentation of oxygen-containing molecules via C-O bond cleavage promoted by coordination to niobium and tantalum pentahalides. <i>Dalton Transactions</i> , 2009 , 6759-72	4.3	26	
142	First direct assembly of molecular helical complexes into a coordination polymer. <i>Chemical Communications</i> , 2008 , 1992-4	5.8	21	
141	Unusual room temperature activation of 1,2-dialkoxyalkanes by niobium and tantalum pentachlorides. <i>Dalton Transactions</i> , 2008 , 7026-35	4.3	36	
140	Synthesis and intramolecular and interionic structural characterization of half-sandwich (arene)ruthenium(II) derivatives of bis(pyrazolyl)alkanes. <i>Inorganic Chemistry</i> , 2008 , 47, 11593-603	5.1	46	
139	Addition of Isocyanides at Diiron Evinyliminium Complexes: Synthesis of Novel Ketenimine B is(alkylidene) Complexes. <i>Organometallics</i> , 2008 , 27, 5058-5066	3.8	30	
138	Chemical behavior and in vitro activity of mixed phosphine gold(I) compounds on melanoma cell lines. <i>Journal of Medicinal Chemistry</i> , 2008 , 51, 1584-91	8.3	22	
137	Complexes of Niobium(V) and Tantalum(V) Halides with Ligands that Contain NII=O and P=O Functionalities: A Synthetic and Structural Study. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 453-462	2.3	31	

136	Synthesis, Characterization, Spectroscopic and Photophysical Properties of New [Cu(NCS){(L-N)2 or (L?-NN)}(PPh3)] Complexes (L-N, L?-NN = Aromatic Nitrogen Base). <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1974-1984	2.3	33
135	The Polymerization of Tetrahydrofuran Initiated by Niobium(V) and Tantalum(V) Halides. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2107-2112	2.3	23
134	Coupling of Allenes with EAlkylidyne Ligands in Diiron Complexes: Synthesis of Novel Bridging Thio- and Aminobutadienylidene Complexes. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2437	- 2 447	14
133	The chemistry of niobium and tantalum halides, MX5, with haloacetic acids and their related anhydrides: Anhydride CH bond activation promoted by MF5. <i>Polyhedron</i> , 2008 , 27, 1969-1976	2.7	23
132	Zwitterionic diiron vinyliminium complexes: Alkylation, metalation and oxidative coupling at the S and Se functionalities. <i>Journal of Organometallic Chemistry</i> , 2008 , 693, 2383-2391	2.3	9
131	SPh functionalized bridging-vinyliminium diiron and diruthenium complexes. <i>Journal of Organometallic Chemistry</i> , 2008 , 693, 3191-3196	2.3	19
130	Dinuclear copper(II) trispyrazolylborate derivatives with bridging pyrazolate anions. <i>Inorganic Chemistry Communication</i> , 2008 , 11, 665-668	3.1	9
129	Reactivity of niobium and tantalum pentahalides with cyclic ethers and the isolation and characterization of intermediates in the polymerization of tetrahydrofuran. <i>Inorganic Chemistry</i> , 2008 , 47, 365-72	5.1	50
128	From 1,2-dialkoxyalkanes to 1,4-dioxanes. A transformation mediated by NbCl(5)via multiple C-O bond cleavage at room temperature. <i>Chemical Communications</i> , 2008 , 3651-3	5.8	31
127	Synthesis, reactivity, spectroscopic characterization, X-ray structures, PGSE, and NOE NMR studies of (eta5-C5Me5)-rhodium and -iridium derivatives containing bis(pyrazolyl)alkane ligands. <i>Inorganic Chemistry</i> , 2007 , 46, 896-906	5.1	29
126	Alkyneßocyanide Coupling in [Fe2(CNMe)(CO)3(Cp)2]: A New Route to Diiron Evinyliminium Complexes Organometallics, 2007, 26, 3448-3455	3.8	23
125	Reactions of Diazo Compounds at Evinyliminium Ligands: Synthesis of Novel Dinuclear Azine B is(alkylidene) Complexes. <i>Organometallics</i> , 2007 , 26, 3577-3584	3.8	33
124	Synthesis and reactivity of Haloacetato derivatives of iron(II) including the crystal and the molecular structure of [Fe(CF3COOH)2(micro-CF3COO)2]n. <i>Inorganic Chemistry</i> , 2007 , 46, 3378-84	5.1	19
123	Acetylide Addition to Bridging Vinyliminium Ligands in Dinuclear Complexes. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 1799-1807	2.3	21
122	Synthesis and structural characterization of adducts of silver(I) perchlorate with PR3 (R=Ph, cy, o-tolyl) and oligodentate aromatic bases derivative of 2,2?-bipyridyl, L, AgClO4:PR3:L (1:1:1). <i>Inorganica Chimica Acta</i> , 2007 , 360, 1424-1432	2.7	32
121	Synthesis and structural characterization of adducts of silver(I) carboxylate salts AgX (X=CF3COO, CH3COO) with ER3 (E=P, As; R=Ph, cy, o-tolyl) and oligodentate aromatic bases derivative of 2,2?-bipyridyl, L, AgX:PR3:L (1:1:1). <i>Inorganica Chimica Acta</i> , 2007 , 360, 1451-1465	2.7	33
120	Synthesis and structural characterization of adducts of silver(I) oxyanion salts, AgX (X = ClO4, NO3), with Ph2E(CH2)xEPh2 ($\exists pex \exists E = P, As; x = 1 \not B$) and oligodentate aromatic N-bases derivative of 2,2?-bipyridyl, $\exists \exists AgX: dpex: L$ (2:1:2). <i>Inorganica Chimica Acta</i> , 2007 , 360, 1388-1413	2.7	34
119	Synthesis and structural characterization of adducts of silver(I) nitrate with ER3 (E=P, As, Sb; R=Ph, cy, o-tolyl, mes) and oligodentate aromatic bases derivative of 2,2?-bipyridyl, L, AgNO3:ER3:L (1:1:1). <i>Inorganica Chimica Acta</i> , 2007 , 360, 1433-1450	2.7	45

(2006-2007)

118	with Ph2E(CH2)xEPh2 (dpexpe=P, As; x=10) and oligodentate aromatic N-bases derivative of 2,2?-bipyridyl, IPAgX:dpex:L (2:1:1) or (1:1:1). <i>Inorganica Chimica Acta</i> , 2007 , 360, 1414-1423	2.7	30	
117	Synthesis, spectroscopic and structural characterization of the reaction products of quaternary cationic 2,2?-bipyridylium ligand bromide salts with metal halides. <i>Inorganica Chimica Acta</i> , 2007 , 360, 2609-2614	2.7	7	
116	CLI bond formation through olefinthiocarbyne coupling in diiron complexes. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 2245-2252	2.3	12	
115	Additions and intramolecular migrations of nucleophiles in cationic diruthenium Fallenyl complexes. <i>Journal of Organometallic Chemistry</i> , 2007 , 692, 4119-4128	2.3	6	
114	Synthesis, molecular structure (X-ray and DFT), and solution behavior of titanium 4-Acyl-5-pyrazolonates. Correlations with related antitumor beta-diketonato derivatives. <i>Inorganic Chemistry</i> , 2007 , 46, 7553-60	5.1	34	
113	Areneruthenium(II) 4-acyl-5-pyrazolonate derivatives: coordination chemistry, redox properties, and reactivity. <i>Inorganic Chemistry</i> , 2007 , 46, 8245-57	5.1	55	
112	Reactivity of niobium(v) and tantalum(v) halides with carbonyl compounds: synthesis of simple coordination adducts, C-H bond activation, C=O protonation, and halide transfer. <i>Dalton Transactions</i> , 2007 , 4343-51	4.3	47	
111	Synthesis, spectroscopy (IR, multinuclear NMR, ESI-MS), diffraction, density functional study and in vitro antiproliferative activity of pyrazole-beta-diketone dihalotin(IV) compounds on 5 melanoma cell lines. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 58-69	4.2	40	
110	New diruthenium vinyliminium complexes from the insertion of alkynes into bridging aminocarbynes. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 2424-2439	2.3	18	
109	CII bond formation by cyanide addition to dinuclear vinyliminium complexes. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4234-4243	2.3	31	
108	CO Cleavage Promoted by Acetylide Addition to Vinyliminium Diiron Complexes. <i>European Journal of Inorganic Chemistry</i> , 2006 , 2006, 285-289	2.3	16	
107	The imidazole role in strontium beta-diketonate complexes formation. <i>Inorganic Chemistry</i> , 2006 , 45, 3074-85	5.1	14	
106	Unprecedented Zwitterionic Iminium Chalcogenide Bridging Ligands in Diiron Complexes. <i>Organometallics</i> , 2006 , 25, 4808-4816	3.8	39	
105	A new rare-earth metal acylpyrazolonate containing the Zundel ion stabilized by strong hydrogen bonding. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 634-637	3.1	13	
104	Structural characterizations of some adducts of silver(I) nitrate and perchlorate with some cyclic di- (or tri-) ene organic ligands. <i>Inorganica Chimica Acta</i> , 2006 , 359, 1594-1602	2.7	8	
103	Synthesis, spectroscopy and structural characterization of silver(I) complexes containing unidentate N-donor azole-type ligands. <i>Inorganica Chimica Acta</i> , 2006 , 359, 1504-1512	2.7	8	
102	Addition of protic nucleophiles to alkynyl methoxy carbene ligands in diiron complexes. <i>Inorganica Chimica Acta</i> , 2006 , 359, 3345-3352	2.7	1	
101	Syntheses, spectroscopic characterization and X-ray structural studies of lanthanide complexes with adamantyl substituted 4-acylpyrazol-5-one. <i>Inorganica Chimica Acta</i> , 2006 , 359, 4063-4070	2.7	14	

100	Copper(I) monophosphine complexes with functionalized acylpyrazolonate ligands: Syntheses of heterobimetallic Cu Z n and Cu R u adducts. <i>Polyhedron</i> , 2006 , 25, 124-133	2.7	14
99	Innovative Second-Generation Ba and Sr Precursors for Chemical Vapor Deposition of Ba[sub 1월]Sr[sub x]TiO[sub 3] Thin Films. <i>Journal of the Electrochemical Society</i> , 2006 , 153, F35	3.9	5
98	Deprotonation of Evinyliminium Ligands in Diiron Complexes: A Route for the Synthesis of Monoand Polynuclear Species Containing Novel Multidentate Ligands. <i>Organometallics</i> , 2005 , 24, 2297-2306	3.8	42
97	Syntheses, structures, and reactivity of new pentamethylcyclopentadienyl-rhodium(III) and -iridium(III) 4-acyl-5-pyrazolonate complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 7933-42	5.1	30
96	Synthesis and spectroscopic and X-ray structural characterization of R2Sn(IV)-oxydiacetate and -iminodiacetate complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 3094-102	5.1	29
95	Diiron-aminocarbyne complexes with amine or imine ligands: CN coupling between imine and aminocarbyne ligands promoted by tolylacetylide addition to [Fe2{ECN(Me)R}(ECO)(CO)(NHCPh2)(Cp)2][SO3CF3]. <i>Journal of Organometallic Chemistry</i> , 2005 ,	2.3	19
94	Hydride addition at Evinyliminium ligand obtained from disubstituted alkynes. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 837-846	2.3	30
93	Tin(IV) and organotin(IV) derivatives of bis(pyrazolyl)acetate: Synthesis, spectroscopic characterization and behaviour in solution <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 1878-1888	2.3	18
92	Synthesis and reactivity with amines of new diiron alkynyl methoxy carbene complexes. <i>Inorganica Chimica Acta</i> , 2005 , 358, 1469-1484	2.7	12
91	Diiron and diruthenium aminocarbyne complexes containing pseudohalides: stereochemistry and reactivity. <i>Inorganica Chimica Acta</i> , 2005 , 358, 1204-1216	2.7	35
90	Barium acylpyrazolonate derivatives stabilized by O- and N-donor ligands: synthesis, spectral and structural characterization. <i>Inorganica Chimica Acta</i> , 2005 , 358, 1955-1962	2.7	6
89	Synthesis and characterization of silver(I) derivatives containing acylpyrazolonate and phosphino ligands: X-ray crystal structures of monomeric [Ag(QnPe)(PPh3)2] and of dimeric [{Ag(QnPe)(PiBu3)}2] (QnPe=1-phenyl-3-methyl-4-tert-butylacetylpyrazolon-5-ato). <i>Inorganica</i>	2.7	7
88	Acylpyrazolone ligands: Synthesis, structures, metal coordination chemistry and applications. Coordination Chemistry Reviews, 2005 , 249, 2909-2945	23.2	208
87	Formation of CII Bonds in Diiron Complexes by Addition of Carbanions to Alkynyl (methoxy) carbene Ligands. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3250-3260	2.3	18
86	Nitrile ligands activation in dinuclear aminocarbyne complexes. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 1959-1970	2.3	21
85	New bridging ligands from methylation reactions of Evinyliminium diiron complexes. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 4666-4676	2.3	13
84	Stereochemistry of the insertion of disubstituted alkynes into the metal aminocarbyne bond in diiron complexes. <i>Journal of Organometallic Chemistry</i> , 2004 , 689, 528-538	2.3	50
83	Synthesis, Characterization and Reactivity of New (FAminocarbyne) diruthenium Complexes Containing Alkynylimino Ligands. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1494-1504	2.3	15

82	Tin(II) and Lead(II) 4-Acyl-5-pyrazolonates: Synthesis, Spectroscopic and X-ray Structural Characterization. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 3484-3497	2.3	17	
81	Synthesis and spectroscopic characterization (IR, 1H and 31P NMR, electrospray ionization mass) of mono-, di-, tetra- and poly-meric complexes of silver(I) with diphosphine ligands: X-ray crystal structures of AgNO2:(Ph2PCH2PPh2) (1:1)2, AgNO2:(Ph2P(CH2)3PPh2) (1:1)2,	2.7	39	
80	Syntheses and spectroscopic and structural characterization of silver(I) complexes containing tris(isobutyl)phosphine and poly(azol-1-yl)borates. <i>Inorganica Chimica Acta</i> , 2004 , 357, 4247-4256	2.7	23	
79	Syntheses, structural and spectroscopic investigation (IR, NMR and luminescence) of new terbium and europium acylpyrazolonates. <i>Inorganica Chimica Acta</i> , 2004 , 357, 4181-4190	2.7	35	
78	Copper and silver derivatives of scorpionates and related ligands. <i>Polyhedron</i> , 2004 , 23, 451-469	2.7	44	
77	A 4-acyl-5-pyrazolone ligand (HQ) in N-unidentate coordination mode in a Rh(CO)2Cl(HQ)-type complex. <i>Inorganic Chemistry Communication</i> , 2004 , 7, 235-237	3.1	9	
76	Regio- and Stereoselective Hydride Addition at Evinyliminium Ligands in Cationic Diiron Complexes. <i>Organometallics</i> , 2004 , 23, 3348-3354	3.8	51	
75	Silver coordination chemistry of a new versatile "Janus"-type N(2),O(2)-bichelating donor, formation of an unprecedented supramolecular network of binuclear silver building blocks containing a five-coordinate beta-diketonate, and isolation of unexpected silver-tin-silver	5.1	31	
74	(Bis(1,2,4-triazol-1-yl)methane)silver(I) phosphino complexes: structures and spectroscopic properties of mixed-ligand coordination polymers. <i>Inorganic Chemistry</i> , 2004 , 43, 2157-65	5.1	44	
73	Diiron Evinyliminium Complexes from Acetylene Insertion into a Metal Aminocarbyne Bond. <i>Organometallics</i> , 2003 , 22, 1326-1331	3.8	69	
72	Metal Complexes as Hydrogenation Catalysts 2003 , 75-139		13	
71	C?N coupling between Eminocarbyne and nitrile ligands promoted by tolylacetylide addition to [Fe2{ECN(Me)(Xyl)}(ECO)(CO)(NCCMe3)(Cp)2][SO3CF3]: Formation of a novel bridging [1]: [2] allene-diaminocarbene ligand. <i>Journal of Organometallic Chemistry</i> , 2003 , 684, 37-43	2.3	25	
70	(4-Acyl-5-pyrazolonato)titanium Derivatives: Oligomerization, Hydrolysis, Voltammetry, and DFT Study. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 3221-3232	2.3	43	
69	Reactivity of rhodium- 	2.3 226	16	
68	The role of reaction medium on the coordination environment of terbium in complexes with 4-acylpyrazol-5-ones. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 1423-1425	3.1	11	
67	Synthesis, spectroscopic and structural characterisation of Cd(II) and Zn(II) derivatives of tris(3,4,5-trimethylpyrazol-1-yl)methane. <i>Inorganica Chimica Acta</i> , 2003 , 350, 641-650	2.7	9	
66	From mono- to poly-nuclear heteroleptic alkaline earth-titanium complexes containing 2,2,6,6-tetramethylheptane-3,5-dionate (thd) and pyrazole (Hpz) or 3,5-dimethylpyrazole (Hpz*) ligands <i>Inorganica Chimica Acta</i> , 2003 , 355, 157-167	2.7	19	
65	Characterization of diorganotin(IV) complexes with captopril. The first crystallographically authenticated metal complex of this anti-hypertensive agent. <i>Journal of Inorganic Biochemistry</i> , 2003 , 97, 370-6	4.2	28	

64	Lanthanide metal complexes containing the first structurally characterized 时iketonate acid stabilized by hydrogen bonding. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 48-51	3.1	16
63	Diketones and Related Ligands 2003 , 97-115		17
62	Synthesis and spectroscopic characterization of silver(I) complexes with the bis(1,2,4-triazol-1-yl)alkane ligand tz2(CH2). X-ray structures of two- and three-dimensional coordination polymers. <i>Inorganic Chemistry</i> , 2003 , 42, 112-7	5.1	74
61	Antitumor activity of the mixed phosphine gold species chlorotriphenylphosphine-1,3-bis(diphenylphosphino)propanegold(I). <i>Journal of Medicinal Chemistry</i> , 2003 , 46, 1737-42	8.3	55
60	Synthesis and Structural Characterization of Mixed-Sandwich Complexes of Rhodium(III) and Iridium(III) with Cyclopentadienyl and Hydrotris(pyrazolyl)borate Ligands. <i>Organometallics</i> , 2003 , 22, 2820-2826	3.8	33
59	Higher Denticity Ligands 2003 , 211-251		6
58	A Novel Configuration of a Benzoylacetonato-Diorganotin Species is Modified by an Electron-Withdrawing Substituent on Tin Synthesis , IR and NMR Spectroscopy, Structure, and ab initio Studies. <i>European Journal of Inorganic Chemistry</i> , 2002 , 2002, 1447-1455	2.3	11
57	Organotin(IV) derivatives of novel	2.3	34
56	Acetonitrile activation in di-iron Etarbyne complexes: synthesis and structure of the cyanomethyl complex [Fe2(ECNMe2)(ECO)(CO)(CH2CN)(Cp)2]. <i>Journal of Organometallic Chemistry</i> , 2002 , 649, 64-69	2.3	29
55	The reactivity of new (1,5-cyclooctadiene)rhodium acylpyrazolonates towards N- and P-donor ligands: X-ray structures of [Rh(1,5-COD)Qs], [Rh(1,5-COD)(phen)]Qs[D.5H2O (HQs=1-phenyl-3-methyl-4-(2-thenoyl)-pyrazol-5-one) and [Rh(1,5-COD)Br]2. <i>Journal of</i>	2.3	34
54	Silver(I) derivatives with new functionalised acylpyrazolonates. <i>Inorganica Chimica Acta</i> , 2002 , 329, 100-	121.72	23
53	Complexes of Some d and f Elements with New 4-Acylpyrazol-5-ones: Synthesis and Study. <i>Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya</i> , 2002 , 28, 259-263	1.6	8
52	First structurally characterized silver(I) derivatives with nonfluorinated beta-diketones. <i>Inorganic Chemistry</i> , 2002 , 41, 1151-61	5.1	37
51	Synthesis, structure and luminescence properties of new rare earth metal complexes with 1-phenyl-3-methyl-4-acylpyrazol-5-ones. <i>Dalton Transactions RSC</i> , 2002 , 1409		50
50	The interaction of organotin(IV) acceptors with 1,4-bis(5-hydroxy-1-phenyl-3-methyl-1H-pyrazol-4-yl)butane-1,4-dione. <i>Dalton Transactions RSC</i> , 2002 , 188-194		14
49	A new family of ionic dinuclear strontium (imH2)2[Sr2(Q)6] compounds (imH = imidazole; QH = 1-phenyl-3-methyl-4-acylpyrazol-5-one). <i>Dalton Transactions RSC</i> , 2002 , 2616-2623		9
48	syn目nti Conversion in Octahedral Bis(时ketonato)diorganotin(IV) Derivatives Containing Fluorinated 4-Acyl-5-pyrazolonato Donors. <i>European Journal of Inorganic Chemistry</i> , 2001 , 2001, 2171-2	180	15
47	Organotin(IV) derivatives containing bis(diphenylphosphine)- and bis(diphenylphosphineoxo)alkanes. <i>Inorganica Chimica Acta</i> , 2001 , 312, 125-132	2.7	20

46	Structure and volatility of copper complexes containing pyrazolyl-based ligands. <i>Inorganica Chimica Acta</i> , 2001 , 315, 88-95	2.7	25	
45	Synthesis and characterisation of tin(IV) and organotin(IV) derivatives 2-{[(2-hydroxyphenyl)imino]methyl}phenol. <i>Inorganica Chimica Acta</i> , 2001 , 325, 103-114	2.7	127	
44	Interaction of Rh(I) with a new polydentate O4,N-donor pyrazolone able to form mononuclear, dinuclear and heterobimetallic compounds. <i>Inorganic Chemistry Communication</i> , 2001 , 4, 290-293	3.1	9	
43	INTERACTION OF DIORGANOTIN(IV) DERIVATIVES OF AZOLES WITH NUCLEOTIDES. AQUEOUS AND SOLID-STATE COORDINATION CHEMISTRY OF [R2SnX2(N2-DONOR)] SPECIES WITH NUCLEOTIDES. <i>Main Group Metal Chemistry</i> , 2001 , 24,	1.6	2	
42	ZINC AND CADMIUM DERIVATIVES CONTAINING SEVERAL 4-ACYL-5-PYRAZOLONATE DONORS AND ADDITIONAL ANCILLARY LIGANDS. <i>Main Group Metal Chemistry</i> , 2001 , 24,	1.6	4	
41	The interaction of organotin(IV) acceptors with a benzoic acid containing two pyrazolone groups. <i>Dalton Transactions RSC</i> , 2001 , 1790-1797		39	
40	New volatile polyazolylborates of copper(I) for MOCVD. <i>European Physical Journal Special Topics</i> , 2001 , 11, Pr3-585-Pr3-592		2	
39	On the interaction of acylpyrazolonates with zinc(II) acceptors: the role of ancillary ligands. <i>Inorganica Chimica Acta</i> , 2000 , 307, 97-105	2.7	15	
38	Influence of sterically demanding groups on the structure and stability in the solid and solution state of (acylpyrazolonate)bis(phosphine)copper(I) derivatives. <i>Inorganica Chimica Acta</i> , 2000 , 299, 65-	79 ^{2.7}	21	
37	Novel bis(acylpyrazolonato)cadmium(II) derivatives and their reactivity toward aromatic and aliphatic N2-donor ligands. <i>Dalton Transactions RSC</i> , 2000 , 831-836		16	
36	Unexpected synthesis of (bis(diphenylphosphinoyl)ethane) [2(2,2-dihydroperoxypropane) 1:2 adduct: a new route to stable organic dihydroperoxides. <i>Chemical Communications</i> , 2000 , 1901-1902	5.8	10	
35	Synthesis, structure, and antitumor activity of a novel tetranuclear titanium complex. <i>Journal of Medicinal Chemistry</i> , 2000 , 43, 3665-70	8.3	75	
34	Tin(IV) and organotin(IV) derivatives of novel ځiketones. <i>Journal of Organometallic Chemistry</i> , 1999 , 580, 344-353	2.3	20	
33	Group 12 metal complexes of tetradentate N2O2Bchiff-base ligands incorporating pyrazole. <i>Polyhedron</i> , 1999 , 18, 3041-3050	2.7	85	
32	An Unusual Configuration for a Bis(4-acylpyrazolon-5-ate)diorganotin Species. <i>Organometallics</i> , 1999 , 18, 2398-2400	3.8	22	
31	Synthesis and structural systematics of mixed triphenylphosphine/imidazole base adducts of silver(I) oxyanion salts <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 4047-4055		40	
30	New co-ordination compounds derived from barium(II) and the anionic 4-tert-butylacetyl-3-methyl-1-phenylpyrazol-5-onate ligand (Q)I Crystal and molecular structure of [Ba2Q4(H2O)4], [Ba2Q4(Him)4], [BaQ2(tetraglyme)] (tetraglyme =		17	
29	2,5,8,11,14-pentaoxapentadecane) and [BaQ2(phen)2]. <i>Journal of the Chemical Society Dalton</i> New volatile heterocyclic metal diketonates for MOCVD. <i>European Physical Journal Special Topics</i> , 1999, 09, Pr8-929-Pr8-934		2	

28 Heteronuclear NMR Applications (As, Sb, Bi)* 1999, 779-784

	(1 Dhorul 2 mathy) 4 partyleyspales 5 atolehadiyas (1) compleyes synthesis atolehadiyas		
27	(1-Phenyl-3-methyl-4-acetylpyrazolon-5-ato)rhodium(I) complexes, synthesis, structural and spectroscopical characterization: Reactivity of diolefin- and dicarbonyl-rhodium complexes toward N-, P- and O-donors. <i>Journal of Organometallic Chemistry</i> , 1998 , 566, 187-201	2.3	16
26	Tin(IV) and organotin(IV) derivatives of novel 瞪iketones. III Diorgano- and dihalotin(IV) complexes of 1,3-dimethyl-4-R(C?O)-pyrazol-5-one (R=CH3, C6H5) and the crystal structure of trans-dicyclohexylbis(1,3-dimethyl-4-acetylpyrazolon-5-ato)tin(IV). <i>Journal of Organometallic</i>	2.3	39
25	Tris(4-bromo-1H-pyrazol-1-yl)borato derivatives of first-row transition and group 12 and 14 metals. X-ray crystal structure of [HB(4-Brpz)3]2 Cd. 113Cd solution NMR study of bis[poly(pyrazolyl)borato]cadmium complexes. <i>Polyhedron</i> , 1998 , 17, 17-26	2.7	20
24	Tin(IV) and organotin(IV) complexes containing mono or bidentate N-donor ligands IV. 2-methyl-, 2-isopropyl- and 4-methyl-imidazole derivatives: synthesis, characterization and behaviour in solution. <i>Polyhedron</i> , 1998, 17, 561-576	2.7	27
23	Ligation properties of N-substituted imidazoles: synthesis, spectroscopic and structural investigation, and behaviour in solution of zinc(II) and cadmium(II) complexes. <i>Polyhedron</i> , 1998 , 17, 16	67 7 -769)1 ²²
22	Coordination compounds derived from first-row transition metal salts. Synthesis, analytical, spectroscopic and structural characterization. Crystal structure of [{bis(3,4,5-trimethylpyrazol-1-yl)methane}ZnBr2]. <i>Polyhedron</i> , 1998 , 17, 4145-4154	2.7	12
21	Heteropolymetallic compounds containing 1,1?-bis(diphenylphosphino)ferrocene (DPPF) and pyrazolate ligands: synthesis, spectroscopic characterization and reactivity. Crystal and molecular structure of [(DPPF)Pt(az)2] [azH = pyrazole (pzH) or 3,5-dimethylpyrazole] and		17
20	Copper and calcium complexes with the anionic O2-donor 4-tert-butylacetyl-3-methyl-1-phenylpyrazol-5-onato (QII Influence of hydrogen-bond interactions on lattice architecture in the crystal structures of [CuQ2(H2O)] and [CaQ2(EtOH)2]. Journal of the		18
19	Tin(IV) and organotin(IV) derivatives of novel tiketones I. Dialkyltin(IV) complexes of 1-phenyl-3-methyl-4-R?(C?O)-pyrazol-5-one (R? = CCl3, O?CH3, O?C2H5, O?i?C3H7, O?C7H7). Crystal and molecular structure of trans-dimethylbis]1-phenyl-3-methyl-	2.7	39
18	Tin(IV) and organotin(IV) derivatives of novel tiketones: II. Mono- and diaryltin(IV) complexes of 1-phenyl-3-methyl-4-R(C?O)-pyrazol-5-one (R=CCl3, OCH3, OC2H5). Crystal and molecular structure of trans-dibenzylbis(1-phenyl-3-methyl-4-methoxycarbonyl-pyrazolon-5-ato)tin(IV),	2.7	31
17	(C7H7)2Sn(QOMe)2. <i>Inorganica Chimica Acta</i> , 1997 , 262, 33-46 First-row transition and group 12 element bis[poly[4-methyl-1H-pyrazol-1-yl)borate]] derivatives. X-ray crystal structure of Zn[HB(4-Mepz)3]2ICHCl3. <i>Polyhedron</i> , 1997 , 16, 671-680	2.7	12
16	Trichloro-, mono-, di- and tri-organotin(IV) derivatives of hydridotris(4-methylpyrazol-1-yl)borates. <i>Journal of the Chemical Society Dalton Transactions</i> , 1996 , 2475		23
15	Synthesis and spectroscopic characterization of new Cu(I) complexes containing triaryl-, tricycloalkylphosphines and heterocyclic anionic or neutral N-donor ligands. Crystal and molecular structure of [(Cy3P)2(pzH)Cu]ClO4ICH3OH (Cy=cyclohexyl, pzH=pyrazole). <i>Inorganica Chimica Acta</i> ,	2.7	37
14	Synthesis and characterization of copper(I) derivatives with N-donor ligands III. Hydridotris (1H-pyrazol-1-yl)borate. The X-ray crystal structure of [HB-(Epz)3-Cu(PPh3)]. <i>Polyhedron</i> , 1996 , 15, 881-	-890 ⁷	25
13	Tin(IV) and organotin(IV) complexes containing mono or bidentate N-donor ligands[] 1-benzylimidazole derivatives. <i>Polyhedron</i> , 1996 , 15, 1263-1276	2.7	22
12	Synthesis and characterization of copper(I) and copper(II) coordination compounds containing 4-acylpyrazolon-5-ato ligands. crystal structure of [(4-trifluoroacetyl-1-phenyl-3-methylpyrazolon-5-ato)bis (triphenylphosphine)copper(I)].	2.7	19
11	Tin(IV) and organotin(IV) complexes containing mono or bidentate N-donor ligands II. 14-Phenylimidazole derivatives. Crystal and molecular structure of [bis(4-phenylimidazole) trimethyltin(IV)] chloride. <i>Journal of Organometallic Chemistry</i> , 1996 , 515, 119-130	2.3	23

LIST OF PUBLICATIONS

10	Triorganotin(IV) derivatives of several 4-acyl-5-pyrazolonato ligands: synthesis, spectroscopic characterization and behavior in solution Crystal structure of aquotrimethyl(4-p-methoxybenzoyl-1-phenyl-3-methyl-pyrazolon-5-ato)tin(IV). <i>Journal of</i>	2.3	23
9	Tin(IV) and organotin(IV) derivatives of anionic 4-acyl-5-pyrazolonato ligands: synthesis, spectroscopic characterization (IR, far-IR, 119Sn mbsbauer, 1H, 13C and 119Sn NMR) and behavior in solution crystal and molecular structure of	2.3	34
8	First-row transition- and group 12- and 14-metal(II) bis[hydridotris(3-Me-1H-pyrazol-1-yl) borate]. The X-ray crystal structure of the nickel derivative. <i>Polyhedron</i> , 1994 , 13, 2173-2178	2.7	22
7	Synthesis and characterization of some tin(II) and tin(IV) derivatives of 4-acyl-5-pyrazolones. Crystal structure of bis(1-phenyl-3-methyl-4-acetyl-pyrazolon-5-ato)tin(II). <i>Polyhedron</i> , 1994 , 13, 939-950	2.7	22
6	Synthesis, characterization and spectroscopic investigations of tin(IV) and organotin(IV) derivatives of 4-aroyl-5-pyrazolones. Crystal structure of trans-dimethylbis[1-phenyl-3-methyl-4-(4-bromobenzoyl)- pyrazolon-5-ato]tin(IV). <i>Journal of</i>	2.3	30
5	Synthesis and Characterization of Some Tin(IV) and Organotin(IV) Derivatives of 1-Phenyl-3-Methyl-4-Aroyl-5-Pyrazolones. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 1993 , 23, 1485-1505		11
4	Tin(IV) and organotin(IV) complexes containing the anion of some substituted-3-methyl-4-acyl-5-pyrazolones. Crystal structure of dimethylbis(1-phenyl-3-methyl-4-benzoyl pyrazolon-5-ato)tin(IV). <i>Journal of Organometallic</i>	2.3	34
3	Chemistry, 1993 , 458, 39-48 Tin(IV) and organotin(IV) complexes with heterocyclic	2.3	12
2	Medicinal/Biocidal Applications of Tin Compounds and Environmental Aspects413-496		9
1	Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes with Ancillary Pyrazole-Based Li	gands2	69-284