Peter J Franks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698769/publications.pdf

Version: 2024-02-01

201575 330025 5,654 37 27 37 h-index citations g-index papers 37 37 37 5736 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantitative critique of leafâ€based paleoâ€CO ₂ proxies: Consequences for their reliability and applicability. Geological Journal, 2021, 56, 886-902.	0.6	11
2	Evolution of rapid blueâ€light response linked to explosive diversification of ferns in angiosperm forests. New Phytologist, 2021, 230, 1201-1213.	3.5	33
3	Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO ₂ concentration. Climate of the Past, 2019, 15, 795-809.	1.3	16
4	No Evidence for a Large Atmospheric CO ₂ Spike Across the Cretaceousâ€Paleogene Boundary. Geophysical Research Letters, 2019, 46, 3462-3472.	1.5	21
5	Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5015-5020.	3.3	138
6	Seasonal patterns in rainforest litterfall: Detecting endogenous and environmental influences from longâ€ŧerm sampling. Austral Ecology, 2018, 43, 225-235.	0.7	7
7	Multiple Proxy Estimates of Atmospheric CO ₂ From an Early Paleocene Rainforest. Paleoceanography and Paleoclimatology, 2018, 33, 1427-1438.	1.3	20
8	Comparing optimal and empirical stomatal conductance models for application in Earth system models. Global Change Biology, 2018, 24, 5708-5723.	4.2	75
9	Comment on "Was atmospheric CO2 capped at 1000 ppm over the past 300 million years?―by McElwain J. C. et al. [Palaeogeogr. Palaeoclimatol. Palaeoecol. 441 (2016) 653–658]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 472, 256-259.	1.0	9
10	Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology, 2017, 174, 732-747.	2.3	158
11	Stomatal Function across Temporal and Spatial Scales: Deep-Time Trends, Land-Atmosphere Coupling and Global Models. Plant Physiology, 2017, 174, 583-602.	2.3	119
12	Molecular Evolution of Grass Stomata. Trends in Plant Science, 2017, 22, 124-139.	4.3	202
13	No evidence of general CO ₂ insensitivity in ferns: one stomatal control mechanism for all land plants?. New Phytologist, 2016, 211, 819-827.	3.5	49
14	Optimal allocation of leaf epidermal area for gas exchange. New Phytologist, 2016, 210, 1219-1228.	3.5	139
15	Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf. Journal of Experimental Botany, 2015, 66, 1303-1315.	2.4	58
16	Increasing waterâ€use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 2015, 207, 188-195.	3.5	270
17	New constraints on atmospheric CO ₂ concentration for the Phanerozoic. Geophysical Research Letters, 2014, 41, 4685-4694.	1.5	189
18	Connecting stomatal development and physiology. New Phytologist, 2014, 201, 1079-1082.	3.5	17

#	Article	IF	CITATIONS
19	Passive and active stomatal control: either or both?. New Phytologist, 2013, 198, 325-327.	3.5	48
20	Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 2013, 64, 495-505.	2.4	459
21	Sensitivity of plants to changing atmospheric <scp>CO</scp> ₂ concentration: from the geological past to the next century. New Phytologist, 2013, 197, 1077-1094.	3.5	336
22	Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 547-555.	1.8	263
23	Megacycles of atmospheric carbon dioxide concentration correlate with fossil plant genome size. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 556-564.	1.8	39
24	Physiological framework for adaptation of stomata to CO ₂ from glacial to future concentrations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 537-546.	1.8	108
25	Size is not everything for desiccationâ€sensitive seeds. Journal of Ecology, 2012, 100, 1131-1140.	1.9	27
26	Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History. Current Biology, 2011, 21, 1030-1035.	1.8	162
27	Stomata: key players in the earth system, past and present. Current Opinion in Plant Biology, 2010, 13, 232-239.	3.5	265
28	Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using <i>Eucalyptus globulus</i> . Plant, Cell and Environment, 2009, 32, 1737-1748.	2.8	283
29	Maximum leaf conductance driven by CO ₂ effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10343-10347.	3.3	750
30	Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: An analysis using Eucalyptus globulus. Plant, Cell and Environment, 2009, 32, 1737-1748.	2.8	84
31	The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiology, 2007, 143, 78-87.	2.3	508
32	The global trend in plant twining direction. Global Ecology and Biogeography, 2007, 16, 795-800.	2.7	34
33	Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant, Cell and Environment, 2007, 30, 19-30.	2.8	266
34	Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant, Cell and Environment, 2006, 29, 584-592.	2.8	93
35	Stomatal control and hydraulic conductance, with special reference to tall trees. Tree Physiology, 2004, 24, 865-878.	1.4	94
36	Use of the pressure probe in studies of stomatal function. Journal of Experimental Botany, 2003, 54, 1495-1504.	2.4	27

#	Article	lF	CITATIONS
37	The Effect of Exogenous Abscisic Acid on Stomatal Development, Stomatal Mechanics, and Leaf Gas Exchange in Tradescantia virginiana. Plant Physiology, 2001, 125, 935-942.	2.3	277