Pedro G Boj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698520/publications.pdf

Version: 2024-02-01

		304368	360668
68	1,468	22	35
papers	citations	h-index	g-index
68	68	68	1229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	6.4	12
2	Periâ€Acenoacene for Solution Processed Distributed Feedback Laser: The Effect of 1,2â€Oxaborine Doping. Advanced Optical Materials, 2022, 10, .	3.6	9
3	Unveiling photophysical and photonic phenomena by means of optical gain measurements in waveguides and solutions. Optics and Laser Technology, 2021, 136, 106766.	2.2	3
4	Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 2021, 125, 12277-12288.	1.5	7
5	Simultaneous Determination of Refractive Index and Thickness of Submicron Optical Polymer Films from Transmission Spectra. Polymers, 2021, 13, 2545.	2.0	9
6	Nearâ€Infrared Lasing in Fourâ€Zigzag Edged Nanographenes by 1D versus 2D Electronic Ï€â€Conjugation. Advanced Functional Materials, 2021, 31, 2105073.	7.8	25
7	N,N′-Bis(3-methylphenyl)-N,N′-dyphenylbenzidine Based Distributed Feedback Lasers with Holographically Fabricated Polymeric Resonators. Polymers, 2021, 13, 3843.	2.0	4
8	Violet-emitting distributed-feedback laser using a naphtho[2,1- <i>b</i> :6,5- <i>b</i> ′]difuran derivative. Journal of Materials Chemistry C, 2021, 9, 17287-17290.	2.7	1
9	Blue and Deepâ€Blueâ€Emitting Organic Lasers with Topâ€Layer Distributed Feedback Resonators. Advanced Optical Materials, 2020, 8, 2001153.	3.6	12
10	Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials, 2020, 10, 1525.	1.9	14
11	Kinetically Protected Carbon-Bridged Oligo(<i>p</i> phenylenevinylene) Derivatives for Blue Color Amplified Spontaneous Emission. Bulletin of the Chemical Society of Japan, 2020, 93, 751-758.	2.0	9
12	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie, 2020, 132, 15037-15044.	1.6	6
13	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie - International Edition, 2020, 59, 14927-14934.	7.2	24
14	Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives. Journal of Materials Chemistry C, 2019, 7, 9996-10007.	2.7	21
15	Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design. Scientific Reports, 2019, 9, 11159.	1.6	20
16	Solution-processed nanographene distributed feedback lasers. Nature Communications, 2019, 10, 3327.	5.8	59
17	Sub-400â€nm film thickness determination from transmission spectra in organic distributed feedback lasers fabrication. Thin Solid Films, 2019, 692, 137580.	0.8	8
18	Carbonâ€Bridged <i>p</i> â€Phenylenevinylene Polymer for Highâ€Performance Solutionâ€Processed Distributed Feedback Lasers. Advanced Optical Materials, 2018, 6, 1800069.	3.6	20

#	Article	IF	Citations
19	Influence of Blending Ratio and Polymer Matrix on the Lasing Properties of Perylenediimide Dyes. Journal of Physical Chemistry C, 2018, 122, 24896-24906.	1.5	23
20	Bis(aminoaryl) Carbonâ€Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings. Angewandte Chemie - International Edition, 2017, 56, 2898-2902.	7.2	50
21	Bis(aminoaryl) Carbonâ€Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings. Angewandte Chemie, 2017, 129, 2944-2948.	1.6	12
22	An Efficient and Colorâ€Tunable Solutionâ€Processed Organic Thinâ€Film Laser with a Polymeric Top‣ayer Resonator. Advanced Optical Materials, 2017, 5, 1700238.	3.6	39
23	Two-dimensional distributed feedback lasers with thermally-nanoimprinted perylenediimide-containing films. Optical Materials Express, 2017, 7, 1295.	1.6	6
24	Organic distributed feedback laser to monitor solvent extraction upon thermal annealing in solution-processed polymer films. Sensors and Actuators B: Chemical, 2016, 232, 605-610.	4.0	10
25	Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B: Chemical, 2016, 223, 261-265.	4.0	28
26	Improved Amplified Spontaneous Emission of Dyeâ€Doped Functionalized Mesostructured Silica Waveguide Films. Advanced Optical Materials, 2015, 3, 1454-1461.	3.6	3
27	Solution-processable, photo-stable, low-threshold, and broadly tunable thin film organic lasers based on novel high-performing laser dyes. Proceedings of SPIE, 2015, , .	0.8	3
28	Label-free sensors based on perylenediimide-doped polystyrene distributed feedback lasers. Proceedings of SPIE, 2015, , .	0.8	0
29	Distributed feedback lasers based on perylenediimide dyes for label-free refractive index sensing. Sensors and Actuators B: Chemical, 2015, 220, 1368-1375.	4.0	29
30	Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers. Nature Communications, 2015, 6, 8458.	5.8	105
31	Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings. Optical Materials Express, 2014, 4, 733.	1.6	13
32	Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication. Microelectronic Engineering, 2014, 114, 52-56.	1.1	4
33	Perylenediimide-based distributed feedback lasers with holographic relief gratings on dichromated gelatine. Journal of Applied Physics, $2013,114,\ldots$	1.1	19
34	Amplified Spontaneous Emission in Pentathienoacene Dioxides by Direct Optical Pump and by Energy Transfer: Correlation with Photophysical Parameters. Advanced Optical Materials, 2013, 1, 588-599.	3.6	11
35	Improved performance of perylenediimide-based lasers. Journal of Materials Chemistry C, 2013, 1, $1182-1191$.	2.7	47
36	1,7â€Bayâ€Substituted Perylenediimide Derivative with Outstanding Laser Performance. Advanced Optical Materials, 2013, 1, 933-938.	3.6	58

#	Article	IF	CITATIONS
37	Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides. Applied Optics, 2012, 51, 3287.	0.9	30
38	Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers. Applied Physics Letters, 2012, 101, 223303.	1.5	25
39	Film thickness and grating depth variation in organic second-order distributed feedback lasers. Journal of Applied Physics, 2012, 112, .	1.1	43
40	Stimulated Resonance Raman Scattering and Laser Oscillation in Highly Emissive Distyrylbenzeneâ€Based Molecular Crystals. Advanced Materials, 2012, 24, 6473-6478.	11.1	62
41	Efficient organic distributed feedback lasers with imprinted active films. Optics Express, 2011, 19, 22443.	1.7	47
42	Highly photostable solid-state organic distributed feedback laser fabricated via thermal nanoimprint lithography. Microelectronic Engineering, 2010, 87, 1428-1430.	1.1	6
43	Second-order distributed feedback lasers based on films containing perylenediimide derivatives. Proceedings of SPIE, 2010, , .	0.8	1
44	Amplified Spontaneous Emission Properties of Semiconducting Organic Materials. International Journal of Molecular Sciences, 2010, 11, 2546-2565.	1.8	50
45	Critical Temperatures in the Photorefractive Polymer Composite Behavior. Journal of Physical Chemistry Letters, 2010, 1, 383-387.	2.1	2
46	Blue surface-emitting distributed feedback lasers based on TPD-doped films. Applied Optics, 2010, 49, 463.	2.1	25
47	Highly photostable organic distributed feedback laser emitting at 573 nm. Applied Physics Letters, 2010, 97, 171104.	1.5	43
48	Optimization of the Laser Properties of Polymer Films Doped with N,N´-Bis(3-methylphenyl)-N,N´-diphenylbenzidine. Materials, 2009, 2, 1288-1304.	1.3	7
49	Enhanced Photorefractivity of Poly(<i>N</i> â€vinylcarbazole)â€Based Composites through Electricâ€Field Treatments and Ionic Liquid Doping. Advanced Functional Materials, 2009, 19, 428-437.	7.8	11
50	Effect of structural modifications in the laser properties of polymer films doped with perylenebisimide derivatives. Synthetic Metals, 2009, 159, 2293-2295.	2.1	20
51	Effect of ring fusion on the amplified spontaneous emission properties of oligothiophenes. Journal of Materials Chemistry, 2009, 19, 6556.	6.7	17
52	Determination of the glass transition temperature of photorefractive polymer composites from photoconductivity measurements. Applied Physics Letters, 2008, 92, 041101.	1.5	16
53	Photorefractive polymer composites using a trinitrofluorenone–C60 dyad with a conformationally flexible linker as photosensitizer. Synthetic Metals, 2007, 157, 1064-1070.	2.1	8
54	Amplified spontaneous emission in polymer films doped with a perylenediimide derivative. Applied Optics, 2007, 46, 3836.	2.1	40

#	Article	IF	Citations
55	Effect of Structural Modifications in the Spectral and Laser Properties of Perylenediimide Derivatives. Journal of Physical Chemistry C, 2007, 111, 13595-13605.	1.5	67
56	Amplified spontaneous emission in TPD-based waveguides: thickness and TPD concentration dependence , 2006, , .		2
57	Concentration dependence of amplified spontaneous emission in organic-based waveguides. Organic Electronics, 2006, 7, 319-329.	1.4	38
58	Photorefractive properties of an unsensitized polymer composite based on a dicyanostyrene derivative as nonlinear optical chromophore. Applied Physics Letters, 2005, 87, 261111.	1.5	11
59	Concentration dependence of amplified spontaneous emission in two oligo-(p-phenylenevinylene) derivatives. Journal of Applied Physics, 2005, 97, 063522.	1.1	20
60	Tuneability of amplified spontaneous emission through control of the thickness in organic-based waveguides. Journal of Applied Physics, 2005, 97, 093103.	1.1	51
61	TPD-BASED BLUE ORGANIC LASERS. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 621-626.	1.1	11
62	Synthesis and Electrochemical and Photorefractive Properties of New Trinitrofluorenoneâ^'C60Photosensitizers. Chemistry of Materials, 2004, 16, 5021-5026.	3.2	20
63	Diffraction gratings in dry developed dichromated gelatin films. Thin Solid Films, 1998, 317, 343-346.	0.8	12
64	Line-focusing holographic mirrors for solar ultraviolet energy concentration. Applied Optics, 1997, 36, 3689.	2.1	13
65	Double-layer method for increasing the bandwidth of UV spectrally responsive holograms in dichromated gelatin. Applied Optics, 1994, 33, 2917.	2.1	3
66	Broadband reflection holograms in dichromated gelatin. Applied Optics, 1992, 31, 3302.	2.1	17
67	Display of ordinary transmission holograms with a white light source. Applied Optics, 1986, 25, 4146.	2.1	9
68	Dichromated gelatin holograms derived from Agfa 8E75 HD plates. Applied Optics, 1984, 23, 196.	2.1	18