
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698298/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of cascade overlap and C15 clusters on the damage evolution in Fe: An OKMC study. Materialia, 2022, 21, 101344.	2.7	2
2	Spin-lattice dynamics simulation of the Einstein–de Haas effect. Computational Materials Science, 2022, 209, 111359.	3.0	5
3	Collision cascade effects near an edge dislocation dipole in alpha-Fe: Induced dislocation mobility and enhanced defect clustering. Journal of Nuclear Materials, 2021, 543, 152459.	2.7	4
4	Multiscale modelling for fusion and fission materials: The M4F project. Nuclear Materials and Energy, 2021, 29, 101051.	1.3	12
5	Probability distribution for heat exchange in plastic deformation. Physical Review E, 2021, 104, 034101.	2.1	0
6	Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. Journal of Nuclear Materials, 2021, 554, 153113.	2.7	37
7	An object kinetic Monte Carlo method to model precipitation and segregation in alloys under irradiation. Journal of Nuclear Materials, 2021, 557, 153236.	2.7	7
8	Physical mechanisms and parameters for models of microstructure evolution under irradiation in Fe alloys – Part I: Pure Fe. Nuclear Materials and Energy, 2021, 29, 101069.	1.3	7
9	Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts. Physical Review B, 2020, 102, .	3.2	4
10	Revealing the Geometry and Conductance of Double-Stranded Atomic Chains of Gold. Journal of Physical Chemistry C, 2020, 124, 26596-26602.	3.1	3
11	Directional bonding explains the high conductance of atomic contacts in bcc metals. Physical Review B, 2020, 101, .	3.2	4
12	Insights from atomistic models on loop nucleation and growth in α-Fe thin films under Fe+ 100â€ [−] keV irradiation. Journal of Nuclear Materials, 2019, 521, 71-80.	2.7	13
13	Object kinetic Monte Carlo methods applied to modeling radiation effects in materials. Computational Materials Science, 2019, 156, 452-459.	3.0	10
14	Influence of Relativistic Effects on the Contact Formation of Transition Metals. Physical Review Letters, 2018, 120, 076802.	7.8	15
15	Role of first-neighbor geometry in the electronic and mechanical properties of atomic contacts. Physical Review B, 2018, 97, .	3.2	12
16	Disrupted chimera ordering of magnetization within FeCl 2 layers. Europhysics Letters, 2018, 123, 60004.	2.0	2
17	Kinetic Monte Carlo Algorithms for Nuclear Materials Applications. , 2018, , 1-22.		4
18	Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. Physical Chemistry Chemical Physics, 2017, 19, 8061-8068.	2.8	11

#	Article	IF	CITATIONS
19	Permanent modifications in silica produced by ion-induced high electronic excitation: experiments and atomistic simulations. Scientific Reports, 2017, 7, 10641.	3.3	12
20	Defect production in Ar irradiated graphene membranes under different initial applied strains. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 44-48.	1.4	1
21	Microstructure Evolution in Fe and Fe-Cr Alloys with OKMC Methods. EPJ Web of Conferences, 2016, 115, 03001.	0.3	5
22	Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2969-2973.	1.8	9
23	Radiation effects across classes of materials. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2959-2959.	1.8	Ο
24	Controlled rippling of graphene via irradiation and applied strain modify its mechanical properties: a nanoindentation simulation study. Physical Chemistry Chemical Physics, 2016, 18, 13897-13903.	2.8	13
25	Surface effects and statistical laws of defects in primary radiation damage: Tungsten vs. iron. Europhysics Letters, 2016, 115, 36001.	2.0	46
26	Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations. Physical Review B, 2016, 93, .	3.2	17
27	Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers. Physical Review B, 2015, 91, .	3.2	23
28	Modeling contact formation between atomic-sized gold tips via molecular dynamics. Journal of Physics: Conference Series, 2015, 574, 012045.	0.4	10
29	Some Issues in Liquid Metals Research. Metals, 2015, 5, 2128-2133.	2.3	6
30	Molecular dynamics simulations of defect production in graphene by carbon irradiation. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 225-228.	1.4	9
31	Surface-induced vacancy loops and damage dispersion in irradiated Fe thin films. Acta Materialia, 2015, 101, 22-30.	7.9	38
32	Surface damage in TEM thick α-Fe samples by implantation with 150 keV Fe ions. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 217-220.	1.4	3
33	Damage accumulation in pure iron and high concentrated Fe–12.5 at% Cr alloy: comparison between object kinetic Monte Carlo and cluster dynamics. Radiation Effects and Defects in Solids, 2014, 169, 185-193.	1.2	5
34	Molecular dynamics simulations of irradiation of α-Fe thin films with energetic Fe ions under channeling conditions. Journal of Nuclear Materials, 2014, 452, 453-456.	2.7	2
35	Stability of vacancy clusters in FeCr alloys: A study of the Cr concentration dependence. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 46-50.	1.4	6
36	Effect of ion flux on helium retention in helium-irradiated tungsten. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 81-83.	1.4	15

#	Article	IF	CITATIONS
37	Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development. Journal of Nuclear Materials, 2013, 442, S834-S845.	2.7	10
38	MMonCa: An Object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion. Computer Physics Communications, 2013, 184, 2703-2710.	7.5	100
39	Influence of the picosecond defect distribution on damage accumulation in irradiated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>î±</mml:mi>-Fe. Physical Review B, 2012, 85, .</mml:math 	3.2	47
40	Mechanical Annealing of Metallic Electrodes at the Atomic Scale. Physical Review Letters, 2012, 108, 205502.	7.8	37
41	Direct simulation of resistivity recovery experiments in carbon-doped α-iron. Physica Scripta, 2011, T145, 014049.	2.5	21
42	Defect energetics in Fe–Cr alloys from empirical interatomic potentials. Journal of Nuclear Materials, 2011, 417, 1050-1053.	2.7	4
43	Object Kinetic Monte Carlo calculations of irradiated Fe–Cr dilute alloys: The effect of the interaction radius between substitutional Cr and self-interstitial Fe. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1684-1688.	1.4	10
44	Formation energy of vacancies in FeCr alloys: Dependence on Cr concentration. Journal of Nuclear Materials, 2011, 408, 18-24.	2.7	54
45	Abnormal stress drop at the yield point of aluminum nanowires: A molecular dynamics study. Physical Review B, 2011, 83, .	3.2	16
46	Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods. Journal of Nuclear Materials, 2010, 406, 39-54.	2.7	65
47	Microstructure evolution of irradiated structural materials in nuclear power plants. , 2010, , 189-235.		7
48	Non-Gaussian tails in the probability distribution function of heat exchanged during isothermal stretching of aluminum and gold nanowires. Physical Review E, 2009, 80, 030105.	2.1	3
49	Influence of carbon on the kinetics of He migration and clustering in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>-Fe</mml:mtext></mml:mrow>frc first principles. Physical Review B, 2009, 80, .</mml:math 	a.2	40
50	Molecular dynamics study of structure transformation and H effects in irradiated silica. Journal of Nuclear Materials, 2009, 386-388, 75-78.	2.7	12
51	Object Kinetic Monte Carlo calculations of electron and He irradiation of nickel. Journal of Nuclear Materials, 2009, 386-388, 90-92.	2.7	3
52	On the stressâ€strain curves in gold and aluminum nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2119-2122.	0.8	5
53	Impurity effects on He diffusion in α-Fe. Journal of Nuclear Materials, 2009, 386-388, 33-35.	2.7	12
54	The EU programme for modelling radiation effects in fusion reactor materials: An overview of recent advances and future goals. Journal of Nuclear Materials, 2009, 386-388, 1-7.	2.7	68

#	Article	IF	CITATIONS
55	Influence of Self-Interstitial Mobility on He-Vacancy Cluster Nucleation and Growth in Nickel. Fusion Science and Technology, 2009, 56, 314-317.	1.1	0
56	Helium and point defect accumulation: (ii) kinetic modelling. Comptes Rendus Physique, 2008, 9, 401-408.	0.9	29
57	Stress-strain curves of aluminum nanowires: Fluctuations in the plastic regime and absence of hardening. Physical Review B, 2008, 78, .	3.2	7
58	Mechanical, Electrical, and Magnetic Properties of Ni Nanocontacts. IEEE Nanotechnology Magazine, 2008, 7, 165-168.	2.0	12
59	Molecular dynamics study of defect in amorphous silica; generation and migration. Journal of Physics: Conference Series, 2008, 112, 032032.	0.4	1
60	He production and induced swelling in KOYO-F. Journal of Physics: Conference Series, 2008, 112, 032042.	0.4	0
61	Formation of a Metallic Contact: Jump to Contact Revisited. Physical Review Letters, 2007, 98, 206801.	7.8	73
62	Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination. Physical Review B, 2007, 75, .	3.2	71
63	He diffusion in irradiated뱉^Fe: Anab-initio-based rate theory model. Physical Review B, 2007, 75, .	3.2	99
64	Advances in Materials Physics for IFE at DENIM. , 2007, , .		0
65	Kinetic Monte Carlo modelling of neutron irradiation damage in iron. Fusion Engineering and Design, 2007, 82, 2666-2670.	1.9	7
66	Modelling irradiation effects in fusion materials. Fusion Engineering and Design, 2007, 82, 2413-2421.	1.9	40
67	Effect of self-interstitial cluster migration on helium diffusion in iron. Journal of Nuclear Materials, 2007, 362, 141-145.	2.7	23
68	Influence of self-interstitial mobility on damage accumulation in zirconium under fission irradiation conditions. Journal of Nuclear Materials, 2007, 362, 293-299.	2.7	7
69	Identification and characterization of defects produced in irradiated fused silica through molecular dynamics. Journal of Nuclear Materials, 2007, 367-370, 344-349.	2.7	13
70	Study of cascades damage in Ni by MD with different interatomic potentials. Journal of Nuclear Materials, 2007, 367-370, 298-304.	2.7	15
71	Cascade damage evolution: rate theory versus kinetic Monte Carlo simulations. Journal of Computer-Aided Materials Design, 2007, 14, 171-181.	0.7	20
72	Temperature dependence of damage accumulation in α-zirconium. Journal of Nuclear Materials, 2007, 367-370, 338-343.	2.7	9

#	Article	IF	CITATIONS
73	The role of the fused silica stoichiometry on the intrinsic defects concentration. Journal of Nuclear Materials, 2007, 367-370, 1122-1127.	2.7	4
74	Radiation damage in metals, and amorphous silica in inertial fusion reactors: Modeling and experiments. European Physical Journal Special Topics, 2006, 133, 805-809.	0.2	2
75	Mechanical and electrical properties of Ni nanocontacts. , 2006, , .		1
76	Kinetic Monte Carlo simulations applied to irradiated materials: The effect of cascade damage in defect nucleation and growth. Journal of Nuclear Materials, 2006, 351, 78-87.	2.7	41
77	Long-term behaviour of irradiated hcp Zr using Monte Carlo simulations. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 176-180.	1.4	3
78	Threshold energy of formation of an oxygen vacancy defect in SiO2 by atomic displacements using molecular dynamics. Fusion Engineering and Design, 2005, 75-79, 1027-1030.	1.9	22
79	Activation and damage of fusion materials and tritium effects in inertial fusion reactors: Strategy for adequate irradiation. Laser and Particle Beams, 2005, 23, .	1.0	6
80	Effects of elastic interactions on post-cascade radiation damage evolution in kinetic Monte Carlo simulations. Philosophical Magazine, 2005, 85, 661-675.	1.6	38
81	Atomistic sliding mechanisms of the ${\rm l} \pm = 5$ symmetric tilt grain boundary in bcc iron. Philosophical Magazine, 2005, 85, 3795-3807.	1.6	45
82	Atomistic simulations of threshold displacement energies in SiO2. Journal of Nuclear Materials, 2004, 329-333, 1190-1193.	2.7	14
83	Differences in deformation processes in nanocrystalline nickel with low- and high-angle boundaries from atomistic simulations. Applied Physics Letters, 2004, 84, 598-600.	3.3	39
84	Molecular Dynamics Simulations of Energy Deposition in Solids. Advances in Quantum Chemistry, 2004, 45, 79-98.	0.8	2
85	Temperature-dependent defect properties from ion-irradiation in Pu(Ga). Journal of Alloys and Compounds, 2004, 368, 62-74.	5.5	60
86	Atomistic shock Hugoniot simulation of single-crystal copper. Journal of Applied Physics, 2004, 96, 3793-3799.	2.5	200
87	X-Ray Diffraction from Shocked Crystals: Experiments and Predictions of Molecular Dynamics Simulations. AIP Conference Proceedings, 2004, , .	0.4	4
88	Metals far from equilibrium: From shocks to radiation damage. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 56-63.	1.4	32
89	Threats to ICF reactor materials: computational simulations of radiation damage induced topological changes in fused silica. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 88-92.	1.4	11
90	Laser damage probability studies of fused silica modified by MeV ion implantation. Nuclear Instruments & Methods in Physics Research B, 2003, 207, 72-79.	1.4	18

#	Article	IF	CITATIONS
91	Modeling microstructure evolution of f.c.c. metals under irradiation in the presence of He. Journal of Nuclear Materials, 2003, 323, 163-168.	2.7	37
92	Modeling of time-dependent damage in structural wall of inertial fusion reactors and new tight binding model for SiC. Fusion Engineering and Design, 2003, 69, 795-801.	1.9	0
93	Defect based spin mediation in δ-phase plutonium. Materials Research Society Symposia Proceedings, 2003, 802, 227.	0.1	0
94	High-pressure, high-strain-rate lattice response of shocked materials. Physics of Plasmas, 2003, 10, 1569-1576.	1.9	41
95	Multiple film plane diagnostic for shocked lattice measurements (invited). Review of Scientific Instruments, 2003, 74, 1929-1934.	1.3	36
96	Defect diffusion in hcp Zirconium: A kinetic Monte Carlo approach. Materials Research Society Symposia Proceedings, 2003, 792, 178.	0.1	1
97	Fused Silica Final Optics for Inertial Fusion Energy: Radiation Studies and System-Level Analysis. Fusion Science and Technology, 2003, 43, 540-558.	1.1	43
98	Time-Dependent Neutronics in Structural Materials of Inertial Fusion Reactors and Simulation of Defect Accumulation in Pulsed Fe and SiC. Fusion Science and Technology, 2003, 43, 384-392.	1.1	3
99	Large enhancement of boron solubility in silicon due to biaxial stress. Applied Physics Letters, 2002, 80, 4738-4740.	3.3	41
100	Insight into the materials choice for inertial fusion energy reactors considering radiation damage: Neutron irradiation intensities and basic knowledge from multiscale modeling. Laser and Particle Beams, 2002, 20, 627-631.	1.0	1
101	Structural modifications in fused silica due to laser-damage-induced shock compression. , 2002, , .		11
102	Results from systematic modeling of neutron damage in inertial fusion energy reactors. Fusion Engineering and Design, 2002, 60, 55-63.	1.9	3
103	Multiscale modeling study of pulsed damage accumulation in α-Fe under inertial fusion conditions. Journal of Nuclear Materials, 2002, 307-311, 907-911.	2.7	2
104	Modeling defect production in silica glass due to energetic recoils using molecular dynamics simulations. Journal of Nuclear Materials, 2002, 307-311, 891-894.	2.7	11
105	Correlating TEM images of damage in irradiated materials to molecular dynamics simulations. Journal of Nuclear Materials, 2002, 307-311, 988-992.	2.7	7
106	Modeling and Computer Simulation: Kinetic Monte Carlo/ Molecular Dynamics. , 2001, , 5697-5700.		0
107	Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage. Optics Express, 2001, 8, 611.	3.4	70
108	Multiscale Modeling of Radiation Damage of Metals and SIC in Inertial Fusion Reactors. Fusion Science and Technology, 2001, 39, 579-584.	0.6	2

#	Article	IF	CITATIONS
109	Pulse frequency effect on neutron damage in α-Iron:A KMC analysis. Materials Research Society Symposia Proceedings, 2001, 677, 251.	0.1	3
110	Multiscale modeling of radiation damage: applications to damage production by GeV proton irradiation of Cu and W, and pulsed irradiation effects in Cu and Fe. Journal of Nuclear Materials, 2001, 296, 90-100.	2.7	42
111	Mechanical property degradation in irradiated materials: A multiscale modeling approach. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 23-31.	1.4	59
112	Fundamental Studies of Plutonium Aging. MRS Bulletin, 2001, 26, 679-683.	3.5	43
113	Relative Stability of Silicon Self-Interstitial Defects. Materials Research Society Symposia Proceedings, 2000, 610, 11101.	0.1	3
114	Comparative study of damage accumulation in iron under magnetic and inertial fusion conditions. Journal of Nuclear Materials, 2000, 283-287, 768-772.	2.7	8
115	Simulation of damage production and accumulation in vanadium. Journal of Nuclear Materials, 2000, 276, 221-229.	2.7	39
116	Heavy ion irradiation and annealing of lead: atomistic simulations and experimental validation. Journal of Nuclear Materials, 2000, 276, 186-193.	2.7	9
117	Comparative study of radiation damage accumulation in Cu and Fe. Journal of Nuclear Materials, 2000, 276, 13-21.	2.7	204
118	Atomic scale models of ion implantation and dopant diffusion in silicon. Thin Solid Films, 2000, 365, 219-230.	1.8	35
119	Defect production and damage evolution in Al: a molecular dynamics and Monte Carlo computer simulation. Nuclear Instruments & Methods in Physics Research B, 1999, 153, 105-115.	1.4	16
120	The primary damage state and its evolution over multiple length and time scales: Recent atomic-scale computer simulation studies. Radiation Effects and Defects in Solids, 1999, 148, 95-126.	1.2	14
121	Title is missing!. Journal of Computer-Aided Materials Design, 1998, 5, 243-264.	0.7	9
122	The fraction of substitutional boron in silicon during ion implantation and thermal annealing. Applied Physics Letters, 1998, 72, 2736-2738.	3.3	71
123	Linking ab initio Energetics to Experiment: Kinetic Monte Carlo Simulation of Transient Enhanced Diffusion of B in Si. Materials Research Society Symposia Proceedings, 1998, 538, 291.	0.1	2
124	Annealing Kinetics of Single Displacement Cascades in Ni: An Atomic Scale Computer Simulation. Materials Research Society Symposia Proceedings, 1998, 540, 685.	0.1	9
125	Defect production and annealing kinetics in elemental metals and semiconductors. Journal of Nuclear Materials, 1997, 251, 13-33.	2.7	38
126	Molecular Dynamics Simulation of Cascade Damage in Gold. Materials Research Society Symposia Proceedings, 1996, 439, 367.	0.1	2

#	Article	IF	CITATIONS
127	Dose Rate Effects During Damage Accumulation in Silicon. Materials Research Society Symposia Proceedings, 1996, 439, 125.	0.1	2
128	Surface Effects During Ion Beam Processing of Materials. Materials Research Society Symposia Proceedings, 1995, 396, 3.	0.1	3
129	Disordering and defect production in silicon by keV ion irradiation studied by molecular dynamics. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 1-8.	1.4	61
130	Relocation cross-sections in silicon: Theoretical models. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 19-23.	1.4	2
131	Depth resolution in depth profiling of marker layers by energetic ion bombardment. Nuclear Instruments & Methods in Physics Research B, 1995, 95, 91-96.	1.4	0
132	Recrystallization of a planar amorphousâ€crystalline interface in silicon by low energy recoils: A molecular dynamics study. Journal of Applied Physics, 1995, 77, 3121-3125.	2.5	58
133	Depth profiling of isotopic markers. Vacuum, 1994, 45, 1123-1124.	3.5	0
134	Bulk atomic relocation in low-energy collision cascades in silicon: Molecular Dynamics versus Monte Carlo simulations. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 363-368.	1.4	5
135	Problems encountered in calculations of collisional mixing in compounds. Journal of Physics Condensed Matter, 1993, 5, A303-A304.	1.8	0