
Simon Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698295/publications.pdf Version: 2024-02-01

SIMON ALLEN

#	Article	IF	CITATIONS
1	Editorial: Lake Changes, Drivers and Consequences in High Mountain Asia. Frontiers in Earth Science, 2022, 10, .	0.8	0
2	Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh, India. Science of the Total Environment, 2021, 756, 144008.	3.9	51
3	Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence. Science Bulletin, 2021, 66, 1270-1273.	4.3	31
4	Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth System Science Data, 2021, 13, 741-766.	3.7	97
5	A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 2021, 373, 300-306.	6.0	304
6	The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment. Cryosphere, 2021, 15, 3159-3180.	1.5	38
7	Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surface Processes and Landforms, 2021, 46, 2551-2564.	1.2	18
8	Future Glacial Lake Outburst Flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology, 2021, 388, 107783.	1.1	32
9	Editorial: Himalayan Climate Interaction. Frontiers in Environmental Science, 2020, 8, .	1.5	5
10	Recent flood hazards in Kashmir put into context with millennium-long historical and tree-ring records. Science of the Total Environment, 2020, 722, 137875.	3.9	29
11	Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 2020, 208, 103269.	4.0	259
12	70†years of lake evolution and glacial lake outburst floods in the Cordillera Blanca (Peru) and implications for the future. Geomorphology, 2020, 365, 107178.	1.1	48
13	An Integrative and Joint Approach to Climate Impacts, Hydrological Risks and Adaptation in the Indian Himalayan Region. , 2020, , 553-573.		3
14	Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Science Bulletin, 2019, 64, 435-445.	4.3	107
15	Glacial lake evolution and glacier–lake interactions in the Poiqu River basin, central Himalaya, 1964–2017. Journal of Glaciology, 2019, 65, 347-365.	1.1	80
16	Climate change research in bilateral development programmes: experiences from India and Peru. Development in Practice, 2019, 29, 336-348.	0.6	1
17	Translating the concept of climate risk into an assessment framework to inform adaptation planning: Insights from a pilot study of flood risk in Himachal Pradesh, Northern India. Environmental Science and Policy, 2018, 87, 1-10.	2.4	32
18	Dynamics of an outburst flood originating from a small and high-altitude glacier in the Arid Andes of Chile. Natural Hazards, 2018, 94, 93-119.	1.6	9

SIMON ALLEN

#	Article	IF	CITATIONS
19	Differentiating regions for adaptation financing: the role of global vulnerability and risk distributions. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e447.	3.6	13
20	Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 2017, 41, 3-28.	1.4	54
21	Current and Future Glacial Lake Outburst Flood Hazard: Application of GIS-Based Modeling in Himachal Pradesh, India. , 2016, , 181-203.		3
22	Glacial lake outburst flood risk in Himachal Pradesh, India: an integrative and anticipatory approach considering current and future threats. Natural Hazards, 2016, 84, 1741-1763.	1.6	103
23	Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Annals of Glaciology, 2016, 57, 119-130.	2.8	137
24	Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides, 2016, 13, 1479-1491.	2.7	165
25	Permafrost Studies in Kullu District, Himachal Pradesh. Current Science, 2016, 111, 550.	0.4	24
26	Temperature, precipitation and related extremes in mountain areas. , 2015, , 28-49.		7
27	Rock avalanche on 14 July 2014 from Hillary Ridge, Aoraki/Mount Cook, New Zealand. Landslides, 2015, 12, 395-402.	2.7	25
28	Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 2013, 107, 59-69.	1.6	91
29	Detecting Potential Climate Signals in Large Slope Failures in Cold Mountain Regions. , 2013, , 361-367.		6
30	Changes in Climate Extremes and their Impacts on the Natural Physical Environment. , 2012, , 109-230.		1,080
31	lce thawing, mountains falling—are alpine rock slope failures increasing?. Geology Today, 2012, 28, 98-104.	0.3	47
32	Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides, 2011, 8, 33-48.	2.7	149
33	Recent and future warm extreme events and high-mountain slope stability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2435-2459.	1.6	147
34	First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps. Natural Hazards and Earth System Sciences, 2009, 9, 481-499.	1.5	65
35	Vampire rock avalanches of January 2008 and 2003, Southern Alps, New Zealand. Landslides, 2009, 6, 161-166.	2.7	32
36	Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand. Permafrost and Periglacial Processes, 2009, 20, 345-356.	1.5	88

#	Article	IF	CITATIONS
37	Satellite remote sensing procedures for glacial terrain analyses and hazard assessment in the Aoraki Mount Cook region, New Zealand. New Zealand Journal of Geology, and Geophysics, 2008, 51, 73-87.	1.0	16