Zhiheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698125/publications.pdf

Version: 2024-02-01

90 5,895 37
papers citations h-index

95 95 9193
all docs docs citations times ranked citing authors

74

g-index

#	Article	IF	CITATIONS
1	A single nonsynonymous mutation on ZIKV E protein-coding sequences leads to markedly increased neurovirulence in vivo. Virologica Sinica, 2022, 37, 115-126.	3.0	6
2	Evolutionarily conservative and non-conservative regulatory networks during primate interneuron development revealed by single-cell RNA and ATAC sequencing. Cell Research, 2022, 32, 425-436.	12.0	25
3	POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Cell Reports, 2022, 39, 110642.	6.4	7
4	Molecular mechanisms underlying cTAGE5/MEA6-mediated cargo transport and biological functions. Journal of Genetics and Genomics, 2022, 49, 519-522.	3.9	2
5	Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models. Cell Discovery, 2022, 8, 38.	6.7	24
6	SRPS associated protein WDR60 regulates the multipolar-to-bipolar transition of migrating neurons during cortical development. Cell Death and Disease, 2021, 12, 75.	6.3	2
7	The development of human monoclonal antibodies against Zika virus. , 2021, , 359-366.		O
8	Pathophysiological Significance of WDR62 and JNK Signaling in Human Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 640753.	3.7	6
9	Aberrant NAD+ metabolism underlies Zika virus–induced microcephaly. Nature Metabolism, 2021, 3, 1109-1124.	11.9	33
10	Schizophrenia risk-gene Crmp2 deficiency causes precocious critical period plasticity and deteriorated binocular vision. Science Bulletin, 2021, 66, 2225-2237.	9.0	1
11	Zika virus infection disrupts development of both neurons and glial cells. , 2021, , 189-198.		O
12	The association of microcephaly protein WDR62 with CPAP/IFT88 is required for cilia formation and neocortical development. Human Molecular Genetics, 2020, 29, 248-263.	2.9	31
13	Zika Virus Infection Leads to Variable Defects in Multiple Neurological Functions and Behaviors in Mice and Children. Advanced Science, 2020, 7, 1901996.	11.2	8
14	Talpid3-Mediated Centrosome Integrity Restrains Neural Progenitor Delamination to Sustain Neurogenesis by Stabilizing Adherens Junctions. Cell Reports, 2020, 33, 108495.	6.4	14
15	Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. Genomics, Proteomics and Bioinformatics, 2020, 18, 737-748.	6.9	12
16	Delayed childhood neurodevelopment and neurosensory alterations in the second year of life in a prospective cohort of ZIKV-exposed children. Nature Medicine, 2019, 25, 1213-1217.	30.7	215
17	Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron, 2019, 101, 1089-1098.e4.	8.1	55
18	Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annual Review of Virology, 2019, 6, 459-479.	6.7	18

#	Article	IF	Citations
19	Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Research, 2019, 29, 265-273.	12.0	115
20	Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Molecular Neurobiology, 2019, 56, 4072-4085.	4.0	19
21	A Single Injection of Human Neutralizing Antibody Protects against Zika Virus Infection and Microcephaly in Developing Mouse Embryos. Cell Reports, 2018, 23, 1424-1434.	6.4	29
22	The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular Mechanisms Required for Cortical Development. Molecular Neurobiology, 2018, 55, 5409-5424.	4.0	27
23	MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biology, 2018, 16, e2006613.	5.6	14
24	Sh3rf2 Haploinsufficiency Leads to Unilateral Neuronal Development Deficits and Autistic-Like Behaviors in Mice. Cell Reports, 2018, 25, 2963-2971.e6.	6.4	25
25	cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9449-E9458.	7.1	18
26	Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discovery, 2018, 4, 43.	6.7	47
27	E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathologica Communications, 2018, 6, 77.	5.2	17
28	Wdr62 is involved in female meiotic initiation via activating JNK signaling and associated with POI in humans. PLoS Genetics, 2018, 14, e1007463.	3.5	30
29	25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephaly in a Mouse Model. Immunity, 2017, 46, 446-456.	14.3	276
30	Transfer of convalescent serum to pregnant mice prevents Zika virus infection and microcephaly in offspring. Cell Research, 2017, 27, 158-160.	12.0	39
31	Efficient genetic manipulation in the developing brain of tree shrew using in utero electroporation and virus infection. Journal of Genetics and Genomics, 2017, 44, 507-509.	3.9	2
32	A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.	12.6	399
33	Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine, 2017, 24, 189-194.	6.1	144
34	Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. Cell, 2017, 171, 201-216.e18.	28.9	321
35	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
36	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85

#	Article	IF	CITATIONS
37	Intranasal infection and contact transmission of Zika virus in guinea pigs. Nature Communications, 2017, 8, 1648.	12.8	47
38	<i>cTAGE5</i> deletion in pancreatic \hat{l}^2 cells impairs proinsulin trafficking and insulin biogenesis in mice. Journal of Cell Biology, 2017, 216, 4153-4164.	5.2	32
39	American Strain of Zika Virus Causes More Severe Microcephaly Than an Old Asian Strain in Neonatal Mice. EBioMedicine, 2017, 25, 95-105.	6.1	47
40	Transferrin Receptor Controls AMPA Receptor Trafficking Efficiency and Synaptic Plasticity. Scientific Reports, 2016, 6, 21019.	3.3	43
41	MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Scientific Reports, 2016, 6, 21534.	3.3	16
42	Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nature Communications, 2016, 7, .	12.8	84
43	A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development. Journal of Biological Chemistry, 2016, 291, 11466-11475.	3.4	33
44	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 120-126.	11.1	614
45	The B-cell receptor BR3 modulates cellular branching via Rac1 during neuronal migration. Journal of Molecular Cell Biology, 2016, 8, 363-365.	3.3	1
46	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 672.	11.1	164
47	Mea6 controls VLDL transport through the coordinated regulation of COPII assembly. Cell Research, 2016, 26, 787-804.	12.0	34
48	Driving WDR62 to the pole. Cell Cycle, 2016, 15, 1180-1181.	2.6	0
49	Numb regulates vesicular docking for homotypic fusion of early endosomes via membrane recruitment of Mon1b. Cell Research, 2016, 26, 593-612.	12.0	24
50	Opposing roles for JNK and Aurora A in regulating WD40-Repeat Protein 62 association with spindle microtubules. Journal of Cell Science, 2015, 128, 527-40.	2.0	41
51	Epigenetic regulation of Atrophin1 by lysine-specific demethylase 1 is required for cortical progenitor maintenance. Nature Communications, 2014, 5, 5815.	12.8	46
52	Microcephaly-Associated Protein WDR62 Regulates Neurogenesis through JNK1 in the Developing Neocortex. Cell Reports, 2014, 6, 104-116.	6.4	71
53	BMP2-SMAD Signaling Represses the Proliferation of Embryonic Neural Stem Cells through YAP. Journal of Neuroscience, 2014, 34, 12039-12048.	3.6	49
54	TAK1 is activated by TGF- \hat{l}^2 signaling and controls axonal growth during brain development. Journal of Molecular Cell Biology, 2014, 6, 349-351.	3.3	9

#	Article	IF	CITATIONS
55	ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Protein and Cell, 2013, 4, 711-721.	11.0	33
56	<i>HDAC6</i> mutations rescue human tau-induced microtubule defects in <i>Drosophila</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4604-4609.	7.1	80
57	Brain Tumor Regulates Neuromuscular Synapse Growth and Endocytosis in Drosophila by Suppressing Mad Expression. Journal of Neuroscience, 2013, 33, 12352-12363.	3.6	33
58	Sh3rf2/POSHER Protein Promotes Cell Survival by Ring-mediated Proteasomal Degradation of the c-Jun N-terminal Kinase Scaffold POSH (Plenty of SH3s) Protein. Journal of Biological Chemistry, 2012, 287, 2247-2256.	3.4	25
59	POSH Localizes Activated Rac1 to Control the Formation of Cytoplasmic Dilation of the Leading Process and Neuronal Migration. Cell Reports, 2012, 2, 640-651.	6.4	63
60	Leucineâ€rich repeat kinase 2 disturbs mitochondrial dynamics via Dynaminâ€like protein. Journal of Neurochemistry, 2012, 122, 650-658.	3.9	134
61	Expression of leucine-rich repeat kinase 2 (LRRK2) inhibits the processing of uMtCK to induce cell death in a cell culture model system. Bioscience Reports, 2011, 31, 429-437.	2.4	19
62	Regulation of the protein stability of POSH and MLK family. Protein and Cell, 2010, 1, 871-878.	11.0	4
63	Regulation of neural stem cell by bone morphogenetic protein (BMP) signaling during brain development. Frontiers in Biology, 2010, 5, 380-385.	0.7	2
64	Expression, purification and preliminary biochemical studies of the N-terminal domain of leucine-rich repeat kinase 2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1780-1784.	2.3	10
65	Methylation of Ribosomal Protein S10 by Protein-arginine Methyltransferase 5 Regulates Ribosome Biogenesis. Journal of Biological Chemistry, 2010, 285, 12695-12705.	3.4	119
66	The Suppression of CRMP2 Expression by Bone Morphogenetic Protein (BMP)-SMAD Gradient Signaling Controls Multiple Stages of Neuronal Development. Journal of Biological Chemistry, 2010, 285, 39039-39050.	3.4	49
67	POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. Journal of Genetics and Genomics, 2010, 37, 605-619.	3.9	9
68	Adenine Nucleotide Translocator Cooperates with Core Cell Death Machinery To Promote Apoptosis in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2009, 29, 3881-3893.	2.3	23
69	<i>Drosophila</i> Tubulin-specific chaperone E functions at neuromuscular synapses and is required for microtubule network formation. Development (Cambridge), 2009, 136, 1571-1581.	2.5	48
70	Cbl negatively regulates JNK activation and cell death. Cell Research, 2009, 19, 950-961.	12.0	11
71	\hat{l}^2 -Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. Journal of Neurochemistry, 2008, 77, 157-164.	3.9	7
72	Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology, 2008, 47, 1964-1973.	7.3	163

#	Article	IF	Citations
73	JNK activation mediates the apoptosis of xCT-deficient cells. Biochemical and Biophysical Research Communications, 2008, 370, 584-588.	2.1	17
74	Proapoptotic Nix Activates the JNK Pathway by Interacting with POSH and Mediates Death in a Parkinson Disease Model. Journal of Biological Chemistry, 2007, 282, 1288-1295.	3.4	35
75	Identification of POSH2, a Novel Homologue of the c-Jun N-Terminal Kinase Scaffold Protein POSH. Developmental Neuroscience, 2007, 29, 355-362.	2.0	8
76	Hint1 Inhibits Growth and Activator Protein-1 Activity in Human Colon Cancer Cells. Cancer Research, 2007, 67, 4700-4708.	0.9	68
77	The JNK Pathway and Neuronal Migration. Journal of Genetics and Genomics, 2007, 34, 957-965.	3.9	20
78	Activation of the Apoptotic JNK Pathway Through the Rac1â€Binding Scaffold Protein POSH. Methods in Enzymology, 2006, 406, 479-489.	1.0	13
79	Siah1 Interacts with the Scaffold Protein POSH to Promote JNK Activation and Apoptosis*. Journal of Biological Chemistry, 2006, 281, 303-312.	3.4	57
80	Synergistic Effects of the SAPK/JNK and the Proteasome Pathway on Glial Fibrillary Acidic Protein (GFAP) Accumulation in Alexander Disease. Journal of Biological Chemistry, 2006, 281, 38634-38643.	3.4	89
81	Direct Interaction of the Molecular Scaffolds POSH and JIP Is Required for Apoptotic Activation of JNKs. Journal of Biological Chemistry, 2006, 281, 15517-15524.	3.4	61
82	Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood, 2005, 105, 226-232.	1.4	110
83	Regulation of Apoptotic c-Jun N-Terminal Kinase Signaling by a Stabilization-Based Feed-Forward Loop. Molecular and Cellular Biology, 2005, 25, 9949-9959.	2.3	58
84	Mixed Lineage Kinase 3 (MLK3)-activated p38 MAP Kinase Mediates Transforming Growth Factor-β-induced Apoptosis in Hepatoma Cells. Journal of Biological Chemistry, 2004, 279, 29478-29484.	3.4	82
85	Analysis of the meiotic role of the mitochondrial ribosomal proteins Mrps17 and Mrpl37 inSaccharomyces cerevisiae. Yeast, 2004, 21, 1241-1252.	1.7	7
86	POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO Journal, 2003, 22, 252-261.	7.8	167
87	Space Solar Telescope Data format Analysis and Configuration. , 2003, 4853, 640.		0
88	beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. Journal of Neurochemistry, 2001, 77, 157-164.	3.9	235
89	The MLK Family Mediates c-Jun N-Terminal Kinase Activation in Neuronal Apoptosis. Molecular and Cellular Biology, 2001, 21, 4713-4724.	2.3	251
90	CEP-1347 (KT7515), a Semisynthetic Inhibitor of the Mixed Lineage Kinase Family. Journal of Biological Chemistry, 2001, 276, 25302-25308.	3.4	187