
Phillip E Mcclean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4698036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local to continentalâ€scale variation in fitness and heritability in common bean. Crop Science, 2022, 62, 767-779.	0.8	7
2	New genomic regions associated with white mold resistance in dry bean using a MAGIC population. Plant Genome, 2022, 15, e20190.	1.6	3
3	The Common Bean V Gene Encodes Flavonoid 3′5′ Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. Frontiers in Plant Science, 2022, 13, 869582.	1.7	7
4	Genetic diversity of Guatemalan climbing bean collections. Genetic Resources and Crop Evolution, 2021, 68, 639-656.	0.8	10
5	The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biology, 2021, 21, 58.	1.6	24
6	Using Breeding Populations With a Dual Purpose: Cultivar Development and Gene Mapping—A Case Study Using Resistance to Common Bacterial Blight in Dry Bean (Phaseolus vulgaris L.). Frontiers in Plant Science, 2021, 12, 621097.	1.7	7
7	Orthology and synteny analysis of receptor-like kinases "RLK―and receptor-like proteins "RLP―in legumes. BMC Genomics, 2021, 22, 113.	1.2	4
8	NAC Candidate Gene Marker for bgm-1 and Interaction With QTL for Resistance to Bean Golden Yellow Mosaic Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 628443.	1.7	12
9	The tepary bean genome provides insight into evolution and domestication under heat stress. Nature Communications, 2021, 12, 2638.	5.8	43
10	Genome-Wide Association Mapping of bc-1 and bc-u Reveals Candidate Genes and New Adjustments to the Host-Pathogen Interaction for Resistance to Bean Common Mosaic Necrosis Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 699569.	1.7	10
11	Faster cooking times and improved iron bioavailability are associated with the down regulation of procyanidin synthesis in slow-darkening pinto beans (Phaseolus vulgaris L.). Journal of Functional Foods, 2021, 82, 104444.	1.6	12
12	Coding Mutations in Vacuolar Protein-Sorting 4 AAA+ ATPase Endosomal Sorting Complexes Required for Transport Protein Homologs Underlie bc-2 and New bc-4 Gene Conferring Resistance to Bean Common Mosaic Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 769247.	1.7	12
13	Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 2020, 40, 1.	1.0	8
14	Computational identification of receptor-like kinases "RLK―and receptor-like proteins "RLP―in legumes. BMC Genomics, 2020, 21, 459.	1.2	16
15	Sources of Resistance to Fusarium solani and Associated Genomic Regions in Common Bean Diversity Panels. Frontiers in Genetics, 2020, 11, 475.	1.1	19
16	Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics, 2020, 215, 267-284.	1.2	26
17	Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. Frontiers in Plant Science, 2020, 11, 576078.	1.7	11
18	Improving the Health Benefits of Snap Bean: Genome-Wide Association Studies of Total Phenolic Content. Nutrients, 2019, 11, 2509.	1.7	27

PHILLIP E MCCLEAN

#	Article	IF	CITATIONS
19	Genotypes and Genomic Regions Associated With Rhizoctonia solani Resistance in Common Bean. Frontiers in Plant Science, 2019, 10, 956.	1.7	48
20	Mapping and characterization of two stem rust resistance genes derived from cultivated emmer wheat accession PI 193883. Theoretical and Applied Genetics, 2019, 132, 3177-3189.	1.8	33
21	Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping. Molecular Genetics and Genomics, 2019, 294, 985-1000.	1.0	27
22	Genome wide association study discovers genomic regions involved in resistance to soybean cyst nematode (Heterodera glycines) in common bean. PLoS ONE, 2019, 14, e0212140.	1.1	14
23	Single and Multi-trait GWAS Identify Genetic Factors Associated with Production Traits in Common Bean Under Abiotic Stress Environments. G3: Genes, Genomes, Genetics, 2019, 9, 1881-1892.	0.8	76
24	Investigation of a Stand-Alone Online Learning Module for Cellular Respiration Instruction. Journal of Microbiology and Biology Education, 2018, 19, .	0.5	7
25	Genetic Analysis of Flooding Tolerance in an Andean Diversity Panel of Dry Bean (Phaseolus vulgaris) Tj ETQq1	1 0.784314 1.7	∙rgBT /Overio
26	Genetic Architecture of Dietary Fiber and Oligosaccharide Content in a Middle American Panel of Edible Dry Bean. Plant Genome, 2018, 11, 170074.	1.6	13
27	White seed color in common bean (<i>Phaseolus vulgaris</i>) results from convergent evolution in the <i>P</i> (<i>pigment</i>) gene. New Phytologist, 2018, 219, 1112-1123.	3.5	77
28	Efficacy of a Meiosis Learning Module Developed for the Virtual Cell Animation Collection. CBE Life Sciences Education, 2017, 16, ar9.	1.1	14
29	Variation in external representations as part of the classroom lecture:An investigation of virtual cell animations in introductory photosynthesis instruction*. Biochemistry and Molecular Biology Education, 2017, 45, 226-234.	0.5	5
30	Common Bean Genomes: Mining New Knowledge of a Major Societal Crop. Compendium of Plant Genomes, 2017, , 129-145.	0.3	4
31	Genetic Architecture of Flooding Tolerance in the Dry Bean Middle-American Diversity Panel. Frontiers in Plant Science, 2017, 8, 1183.	1.7	54
32	Marker-Assisted Molecular Profiling, Deletion Mutant Analysis, and RNA-Seq Reveal a Disease Resistance Cluster Associated with Uromyces appendiculatus Infection in Common Bean Phaseolus vulgaris L. International Journal of Molecular Sciences, 2017, 18, 1109.	1.8	3
33	Phenotypic Diversity for Seed Mineral Concentration in North American Dry Bean Germplasm of Middle American Ancestry. Crop Science, 2017, 57, 3129-3144.	0.8	29
34	Targeted Analysis of Dry Bean Growth Habit: Interrelationship among Architectural, Phenological, and Yield Components. Crop Science, 2016, 56, 3005-3015.	0.8	34
35	Sequenceâ€Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean. Plant Genome, 2016, 9, plantgenome2015.09.0092.	1.6	10
36	Genomeâ€Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. Plant Genome, 2016, 9, plantgenome2016.02.0012.	1.6	136

PHILLIP E MCCLEAN

#	Article	IF	CITATIONS
37	Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways. Journal of Medicinal Food, 2016, 19, 578-585.	0.8	21
38	Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.). Molecular Breeding, 2016, 36, 1.	1.0	65
39	High Level of Nonsynonymous Changes in Common Bean Suggests That Selection under Domestication Increased Functional Diversity at Target Traits. Frontiers in Plant Science, 2016, 7, 2005.	1.7	19
40	The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology. PLoS Biology, 2015, 13, e1002118.	2.6	12
41	New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumeraryÂ×Ânon-supernumerary spikelet genotypes. Theoretical and Applied Genetics, 2015, 128, 893-912.	1.8	47
42	SNP Assay Development for Linkage Map Construction, Anchoring Whole-Genome Sequence, and Other Genetic and Genomic Applications in Common Bean. G3: Genes, Genomes, Genetics, 2015, 5, 2285-2290.	0.8	147
43	Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces. PLoS ONE, 2015, 10, e0129580.	1.1	120
44	Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L Frontiers in Plant Science, 2014, 5, 185.	1.7	79
45	Quantitative trait loci mapping of seed colour, hairy leaf, seedling anthocyanin, leaf chlorosis and days to flowering in <scp>F</scp> ₂ population of <i><scp>B</scp>rassica rapa</i> L Plant Breeding, 2014, 133, 381-389.	1.0	11
46	Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virusresistance in common bean. BMC Genomics, 2014, 15, 903.	1.2	58
47	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	9.4	1,159
48	Common Bean Genomics and Its Applications in Breeding Programs. , 2014, , 185-206.		4
49	Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (Glycine max). PLoS ONE, 2014, 9, e107469.	1.1	92
50	A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Frontiers in Plant Science, 2013, 4, 210.	1.7	18
51	In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr. Frontiers in Plant Science, 2013, 4, 317.	1.7	30
52	Genetic Analysis on Flowering Time and Root System in <i>Brassica napus</i> L. Crop Science, 2013, 53, 141-147.	0.8	21
53	Tan spot susceptibility governed by the Tsn1 locus and race-nonspecific resistance quantitative trait loci in a population derived from the wheat lines Salamouni and Katepwa. Molecular Breeding, 2012, 30, 1669-1678.	1.0	42
54	Whole-Genome QTL Analysis of Stagonospora nodorum Blotch Resistance and Validation of the SnTox4– <i>Snn4</i> Interaction in Hexaploid Wheat. Phytopathology, 2012, 102, 94-104.	1.1	22

#	Article	IF	CITATIONS
55	Mesoamerican origin of the common bean (<i>Phaseolus vulgaris</i> L.) is revealed by sequence data. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E788-96.	3.3	327

 $_{56}$ Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris) Tj ETQq0 0 0 $_{0.98}$ /Overlock 10 Tf

57	Investigation of the domestication of common bean (Phaseolus vulgaris) using multilocus sequence data. Functional Plant Biology, 2011, 38, 953.	1.1	75
58	Genome-Wide Association Analysis Identifies Candidate Genes Associated with Iron Deficiency Chlorosis in Soybean. Plant Genome, 2011, 4, 154-164.	1.6	106
59	Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris). Functional Plant Biology, 2011, 38, 927.	1.1	67

60 Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

61	Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean. PLoS ONE, 2011, 6, e28135.	1.1	61
62	Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2010, 121, 1103-1116.	1.8	99
63	Synteny mapping between common bean and soybean reveals extensive blocks of shared loci. BMC Genomics, 2010, 11, 184.	1.2	100
64	Artificial selection for determinate growth habit in soybean. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8563-8568.	3.3	330
65	Association mapping of iron deficiency chlorosis loci in soybean (Clycine max L. Merr.) advanced breeding lines. Theoretical and Applied Genetics, 2008, 116, 777-787.	1.8	111
66	BAC-end Sequence Analysis and a Draft Physical Map of the Common Bean (Phaseolus vulgaris L.) Genome. Tropical Plant Biology, 2008, 1, 40-48.	1.0	70
67	Phaseolus vulgaris: A Diploid Model for Soybean. , 2008, , 55-76.		28

68 Genetic architecture of chalcone isomerase non-coding regions in common bean (Phaseolus vulgaris) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

69	Molecular and Cellular Biology Animations: Development and Impact on Student Learning. CBE: Life Sciences Education, 2005, 4, 169-179.	0.7	107
70	Sequence diversity analysis of dihydroflavonol 4-reductase intron 1 in common bean. Genome, 2004, 47, 266-280.	0.9	42
71	A molecular marker tightly linked toP, a gene required for flower and seedcoat color in common bean (Phaseolus vulgarisL.), contains the Ty3-gypsyretrotransposonTpv3g. Genome, 2002, 45, 728-736.	0.9	16
72	Classical and Molecular Genetic Studies of the Strong Greenish Yellow Seedcoat Color in `Wagenaar' and `Enola' Common Bean. Journal of the American Society for Horticultural Science, 2002, 127, 50-55.	0.5	16

PHILLIP E MCCLEAN

#	Article	IF	CITATIONS
73	Inheritance of Reverse Margo Seedcoat Pattern and Allelism between the Genes J for Seedcoat Color and L for Partly Colored Seedcoat Pattern in Common Bean. Journal of the American Society for Horticultural Science, 2002, 127, 56-61.	0.5	12
74	Organization and transcription of the gene encoding potato UDP-glucose pyrophosphorylase. Gene, 1997, 186, 293-297.	1.0	14
75	Effect of Expression of UDP-Glucose Pyrophosphorylase Ribozyme and Antisense RNAs on the Enzyme Activity and Carbohydrate Composition of Field-Grown Transgenic Potato Plants. Journal of Plant Physiology, 1996, 147, 644-652.	1.6	57
76	A tandemly repeated sequence from the Plasmopara halstedii genome. Gene, 1993, 124, 127-130.	1.0	10
77	Coefficient of Parentage and Cluster Analysis of North American Dry Bean Cultivars. Crop Science, 1993, 33, 190-197.	0.8	46
78	Estimating Phenylalanine Ammonia-lyase Activity in Common Beans Inoculated with Sclerotinia sclerotiorum. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 937-938.	0.5	6
79	Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues. Plant Cell, Tissue and Organ Culture, 1991, 24, 131-138.	1.2	45
80	The isolation of mitochondria and mitochondrial DNA. Methods in Enzymology, 1986, 118, 437-453.	0.4	45
81	MITOCHONDRIAL DNA SEQUENCE DIVERGENCE AMONG LYCOPERSICON AND RELATED SOLANUM SPECIES. Genetics, 1986, 112, 649-667.	1.2	69

82 Bean rust resistance in the Guatemalan climbing bean germplasm collection. , 0, , .