András N Spaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469792/publications.pdf

Version: 2024-02-01

27 papers 6,516 citations

304743

22

h-index

477307 29 g-index

32 all docs 32 docs citations

times ranked

32

10404 citing authors

#	Article	IF	CITATIONS
1	Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs. Science Immunology, 2023, 8 , .	11.9	35
2	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	14.5	41
3	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	27.8	216
4	Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nature Medicine, 2022, 28, 879-882.	30.7	72
5	The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200413119.	7.1	110
6	Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin. Science, 2022, 376, eabm6380.	12.6	25
7	Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of Experimental Medicine, 2022, 219, .	8.5	21
8	Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	59
9	Multibatch Cytometry Data Integration for Optimal Immunophenotyping. Journal of Immunology, 2021, 206, 206-213.	0.8	25
10	Human <i>STAT3</i> variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. Journal of Experimental Medicine, 2021, 218, .	8.5	30
11	Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nature Medicine, 2021, 27, 1646-1654.	30.7	65
12	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	11.9	357
13	X-linked recessive TLR7 deficiency in \sim 1% of men under 60 years old with life-threatening COVID-19. Science Immunology, 2021, 6, .	11.9	267
14	Biochemically deleterious human <i>NFKB1</i> variants underlie an autosomal dominant form of common variable immunodeficiency. Journal of Experimental Medicine, 2021, 218, .	8.5	32
15	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	12,6	1,749
16	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	12.6	1,983
17	Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	2
18	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	28.9	185

AndrÃis N Spaan

#	Article	IF	CITATIONS
19	Host–Receptor Post-Translational Modifications Refine Staphylococcal Leukocidin Cytotoxicity. Toxins, 2020, 12, 106.	3.4	9
20	Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nature Microbiology, 2018, 3, 708-717.	13.3	63
21	Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, 2017, 15, 435-447.	28.6	267
22	Differential Interaction of the Staphylococcal Toxins Panton–Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. Journal of Immunology, 2015, 195, 1034-1043.	0.8	69
23	Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host and Microbe, 2015, 18, 363-370.	11.0	88
24	The staphylococcal toxins \hat{I}^3 -haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature Communications, 2014, 5, 5438.	12.8	126
25	Neutrophils Versus <i>Staphylococcus aureus</i> : A Biological Tug of War. Annual Review of Microbiology, 2013, 67, 629-650.	7.3	259
26	The Staphylococcal Toxin Panton-Valentine Leukocidin Targets Human C5a Receptors. Cell Host and Microbe, 2013, 13, 584-594.	11.0	250
27	Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface. PLoS Pathogens, 2013, 9, e1003816.	4.7	103