Julien Legros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697401/publications.pdf

Version: 2024-02-01

81	5,381	29	72
papers	citations	h-index	g-index
102	102	102	4927
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Flow dearomatization of electron-poor 3-fluoromethylthioindoles by 1,3-dipolar cycloaddition. Journal of Flow Chemistry, 2022, 12, 141-145.	1.2	3
2	Kinetic model assessment for the synthesis of \hat{l}^3 -valerolactone from n-butyl levulinate and levulinic acid hydrogenation over the synergy effect of dual catalysts Ru/C and Amberlite IR-120. Chemical Engineering Journal, 2022, 430, 133053.	6.6	28
3	Organophosphorus chemical security from a peaceful perspective: sustainable practices in its synthesis, decontamination and detection. Green Chemistry, 2022, 24, 585-613.	4.6	19
4	A continuous flow generator of organic hypochlorites for the neutralization of chemical warfare agent simulants. Green Chemistry, 2022, 24, 3167-3179.	4. 6	11
5	Flow synthesis of an \hat{l}_{\pm} -amino boronic ester as a key precursor of bortezomib drug. Reaction Chemistry and Engineering, 2022, 7, 1285-1288.	1.9	2
6	A multi-step continuous flow synthesis of pomalidomide. Journal of Flow Chemistry, 2022, 12, 383-387.	1.2	2
7	Theoretical, Semiempirical, and Experimental Solvatochromic Comparison Methods for the Construction of the l± ₁ Scale of Hydrogen-Bond Donation of Solvents. Journal of Organic Chemistry, 2022, 87, 6273-6287.	1.7	4
8	Reactivity of 3-nitroindoles with electron-rich species. Chemical Communications, 2021, 57, 27-44.	2.2	50
9	Flow neutralisation of sulfur-containing chemical warfare agents with Oxone: packed bed <i>vs.</i> aqueous solution. Green Chemistry, 2021, 23, 2925-2930.	4.6	15
10	How electrophilic are 3-nitroindoles? Mechanistic investigations and application to a reagentless (4+2) cycloaddition. Chemical Communications, 2021, 57, 10071-10074.	2.2	8
11	Measurement of the hydrogen bond acceptance of ionic liquids and green solvents by the ¹⁹ F solvatomagnetic comparison method. Green Chemistry, 2021, 23, 1816-1822.	4.6	7
12	Soft and effective detoxification of a VX simulant in a nylon 3D printed basic flow reactor. Green Chemistry, 2021, 23, 7522-7527.	4.6	5
13	Hydrogen-Bond Acceptance of Solvents: A $<$ sup $>$ 19 $<$ /sup $>$ F Solvatomagnetic $\hat{l}^2<$ sub $>$ 1 $<$ /sub $>$ Database to Replace Solvatochromic and Solvatovibrational Scales. Journal of Organic Chemistry, 2021, 86, 4143-4158.	1.7	15
14	Continuous flow synthesis of Celecoxib from 2-bromo-3,3,3-trifluoropropene. Journal of Flow Chemistry, $2021, 1-5$.	1.2	6
15	Continuous Flow Synthesis of Propofol. Molecules, 2021, 26, 7183.	1.7	13
16	Correlation analysis of solvent effects on solvolysis rates: What can the empirical parameters of solvents actually say?. Journal of Physical Organic Chemistry, 2020, 33, e4067.	0.9	7
17	Bromine-lithium exchange on gem-dibromoalkenes part 1: batch vs microflow conditions. Journal of Flow Chemistry, 2020, 10, 139-143.	1.2	12
18	Bromine–Lithium Exchange on a <i>gem</i> -Dibromoalkene, Part 2: Comparative Performance of Flow Micromixers. Organic Process Research and Development, 2020, 24, 787-791.	1.3	11

#	Article	IF	CITATIONS
19	First Zinc Bromide Promoted Annulative Domino Reactions between Enamines and Cyclic Morita–Baylis–Hillman Alcohols: Synthesis of N,O-Ketals. Synlett, 2020, 31, 1282-1286.	1.0	1
20	A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light. Green Chemistry, 2020, 22, 4105-4115.	4.6	31
21	Dearomatization of 3-cyanoindoles by (3 + 2) cycloaddition: from batch to flow chemistry. Organic and Biomolecular Chemistry, 2020, 18, 3481-3486.	1.5	18
22	The facile dearomatization of nitroaromatic compounds using lithium enolates of unsaturated ketones in conjugate additions and (4+2) formal cycloadditions. Chemical Communications, 2019, 55, 7494-7497.	2.2	15
23	Introduction to chemical warfare agents, relevant simulants and modern neutralisation methods. Organic and Biomolecular Chemistry, 2019, 17, 6528-6537.	1.5	75
24	Stereoselective synthesis of functionalized vinyl ethers from allyl bromides activated by triethylamine. Synthetic Communications, 2018, 48, 705-713.	1.1	2
25	Solvent effects in the aza-Michael addition of anilines. Comptes Rendus Chimie, 2018, 21, 639-643.	0.2	23
26	Grignard Reagents and Iron. ChemistrySelect, 2018, 3, .	0.7	1
27	New synthesis of imidazole derivatives from cyanobenzenes. Tetrahedron Letters, 2018, 59, 4487-4491.	0.7	23
28	Tetrahydronaphthalene as a precursor of new series of chalcones, flavanones, and flavone. Turkish Journal of Chemistry, $2018,42,.$	0.5	1
29	Michael addition of 1,3-dicarbonyl compounds catalyzed by iron oxide nanoparticles. Tetrahedron Letters, 2018, 59, 4044-4046.	0.7	4
30	Adamantyl aziridines via aza-Michael initiated ring closure (aza-MIRC) reaction. Tetrahedron, 2017, 73, 1120-1126.	1.0	14
31	Oxidative Neutralization of Mustardâ€Gas Simulants in an Onâ€Board Flow Device with Inâ€Line NMR Monitoring. Angewandte Chemie, 2017, 129, 7676-7680.	1.6	11
32	Oxidative Neutralization of Mustardâ€Gas Simulants in an Onâ€Board Flow Device with Inâ€Line NMR Monitoring. Angewandte Chemie - International Edition, 2017, 56, 7568-7572.	7.2	42
33	3. Grignard Reagents and Iron. , 2016, , 114-151.		2
34	"On water―reaction of deactivated anilines with 4-methoxy-3-buten-2-one, an effective butynone surrogate. Organic and Biomolecular Chemistry, 2016, 14, 11085-11087.	1.5	9
35	Addition of 4-(cyclohex-1-en-1-yl)morpholine on 3-nitroindole: an unprecedented dearomatizing process. Organic and Biomolecular Chemistry, 2016, 14, 2833-2839.	1.5	29
36	Selective monoalkylation of amines with light electrophiles using a flow microreactor system. Organic Chemistry Frontiers, 2015, 2, 324-327.	2.3	7

#	Article	IF	Citations
37	A Database of Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding $\hat{l}\pm\langle sub\rangle1\langle sub\rangle$ and $\hat{l}^2\langle sub\rangle1\langle sub\rangle$ Solvent Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. Journal of Physical Chemistry B, 2015, 119, 3174-3184.	1.2	68
38	Benefits of a Dual Chemical and Physical Activation: Direct aza-Michael Addition of Anilines Promoted by Solvent Effect under High Pressure. Journal of Organic Chemistry, 2015, 80, 10375-10379.	1.7	34
39	Iron-promoted C–C bond formation in the total synthesis of natural products and drugs. Natural Product Reports, 2015, 32, 1541-1555.	5.2	71
40	Formylation of amines through catalyst- and solvent-free transamidation reaction. Tetrahedron Letters, 2014, 55, 362-364.	0.7	28
41	Solvatomagnetic Comparison Method: A Proper Quantification of Solvent Hydrogen-Bond Basicity. Journal of Physical Chemistry B, 2014, 118, 7594-7608.	1.2	23
42	Selective monomethylation of primary amines with simple electrophiles. Chemical Communications, 2014, 50, 1836.	2.2	36
43	Aza-Michael Access to Fluoroalkylidene Analogues of Biomolecules. Journal of Organic Chemistry, 2013, 78, 8083-8097.	1.7	18
44	Straightforward synthesis of 2-propylquinolines under multicomponent conditions in fluorinated alcohols. Journal of Fluorine Chemistry, 2013, 152, 94-98.	0.9	10
45	Polyfluorinated mercaptoalcohol as a H-bond modifier of poly(2,3,4,5,6-pentafluorostyrene) (PPFS) enhancing miscibility of hydroxylated-PPFS with various acceptor polymers. Polymer, 2013, 54, 3757-3766.	1.8	12
46	Self-assembly between 1,4-diazabicyclo[2.2.2]octane and bis(hexafluoroalcohols): solid/liquid phase switching for catalyst recycling. Catalysis Science and Technology, 2012, 2, 934.	2.1	4
47	Fluorous tagging of DABCO through halogen bonding: recyclable catalyst for the Morita–Baylis–Hillman reaction. Chemical Communications, 2011, 47, 5855.	2.2	84
48	Synthesis of substituted 8-aminoquinolines and phenanthrolines through a Povarov approach. Organic and Biomolecular Chemistry, 2011, 9, 347-350.	1.5	28
49	Influence of the Structure of Polyfluorinated Alcohols on BrÃ,nsted Acidity/Hydrogen-Bond Donor Ability and Consequences on the Promoter Effect. Journal of Organic Chemistry, 2011, 76, 1126-1133.	1.7	90
50	Fluorous 4â€ <i>N</i> , <i>N</i> à€Dimethylaminopyridine (DMAP) Salts as Simple Recyclable Acylation Catalysts. Chemistry - A European Journal, 2010, 16, 1776-1779.	1.7	45
51	Facile Access to Fluorinated Aryl and Vinyl Ethers through Copperâ€Catalysed Reaction of Fluoro Alcohols. European Journal of Organic Chemistry, 2009, 2009, 3513-3518.	1.2	54
52	Synthesis of pyrazoles through catalyst-free cycloaddition of diazo compounds to alkynes. Green Chemistry, 2009, 11, 156-159.	4.6	98
53	Solvent-Promoted and -Controlled Aza-Michael Reaction with Aromatic Amines. Journal of Organic Chemistry, 2009, 74, 6260-6265.	1.7	113
54	Fluorous analogues of DMAP (F-DMAP): Reusable organocatalysts for acylation reaction. Journal of Fluorine Chemistry, 2008, 129, 974-977.	0.9	10

#	Article	IF	CITATIONS
55	Synthesis of 2,3-unsaturated glycosides via metal-free Ferrier reaction. Tetrahedron, 2008, 64, 10497-10500.	1.0	38
56	Solubility switch of gold nanoparticles through hydrogen bond association. Chemical Communications, 2008, , 4954.	2.2	9
57	Synthesis of new trifluoromethyl peptidomimetics with a triazole moiety. Tetrahedron Letters, 2007, 48, 8360-8362.	0.7	32
58	Facile Synthesis of Tetrahydroquinolines and Julolidines through ÂMulticomponent Reaction. Synlett, 2006, 2006, 1899-1902.	1.0	40
59	A One-Pot Synthesis of Doubly Unsaturated Trifluoromethyl Amines:Easy Access to CF3-Substituted Piperidines. European Journal of Organic Chemistry, 2005, 2005, 1258-1265.	1.2	32
60	Applications of Catalytic Asymmetric Sulfide Oxidations to the Syntheses of Biologically Active Sulfoxides. Advanced Synthesis and Catalysis, 2005, 347, 19-31.	2.1	414
61	Iron-Catalyzed Oxidation of Cycloalkanes and Alkylarenes with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2005, 347, 703-705.	2.1	72
62	Investigations on the Iron-Catalyzed Asymmetric Sulfide Oxidation. Chemistry - A European Journal, 2005, 11, 1086-1092.	1.7	226
63	Iron-Catalyzed Reactions in Organic Synthesis. ChemInform, 2005, 36, no.	0.1	1
64	Synthesis of Enamines, Enol Ethers and Related Compounds by Cross-Coupling Reactions. ChemInform, 2005, 36, no.	0.1	0
65	A One-Pot Synthesis of Doubly Unsaturated Trifluoromethyl Amines: Easy Access to CF3-Substituted Piperidines ChemInform, 2005, 36, no.	0.1	0
66	The Chemistry of Trifluoromethyl Imines and Related Acetals Derived from Fluoral. ChemInform, 2005, 36, no.	0.1	0
67	Synthesis of enamines, enol ethers and related compounds by cross-coupling reactions. Chemical Communications, 2005, , 973.	2.2	220
68	The chemistry of trifluoromethyl imines and related acetals derived from fluoral. Chemical Society Reviews, 2005, 34, 562.	18.7	110
69	Asymmetric Synthesis of Sulindac by Iron-Catalyzed Sulfoxidation. Synlett, 2004, 2004, 2397-2399.	1.0	9
70	Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 2004, 104, 6217-6254.	23.0	2,014
71	Highly Enantioselective Iron-Catalyzed Sulfide Oxidation with Aqueous Hydrogen Peroxide under Simple Reaction Conditions. Angewandte Chemie - International Edition, 2004, 43, 4225-4228.	7.2	225
72	Iron-Catalyzed Asymmetric Sulfide Oxidation with Aqueous Hydrogen Peroxide ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
73	Highly Enantioselective Iron-Catalyzed Sulfide Oxidation with Aqueous Hydrogen Peroxide under Simple Reaction Conditions ChemInform, 2004, 35, no.	0.1	0
74	Stereoselective Barbier-Type Allylation Reaction of Trifluoromethyl Aldimines. Journal of Organic Chemistry, 2003, 68, 6444-6446.	1.7	61
75	Urea-Hydrogen Peroxide/Hexafluoro-2-propanol: An Efficient System for a Catalytic Epoxidation Reaction Without a Metal ChemInform, 2003, 34, no.	0.1	O
76	Stereoselective Barbier-Type Allylation Reaction of Trifluoromethyl Aldimines ChemInform, 2003, 34, no.	0.1	0
77	Iron-Catalyzed Asymmetric Sulfide Oxidation with Aqueous Hydrogen Peroxide. Angewandte Chemie - International Edition, 2003, 42, 5487-5489.	7.2	261
78	Urea-Hydrogen Peroxide/Hexafluoro-2-propanol: An Efficient System for a Catalytic Epoxidation Reaction without a Metal. European Journal of Organic Chemistry, 2002, 2002, 3290-3293.	1.2	42
79	Design of fluoroketones as efficient reagents for epoxidation reactions in hexafluoropropan-2-ol. Tetrahedron, 2002, 58, 3993-3998.	1.0	23
80	Trifluoromethylcyclohexane as a new solvent? Limits of use. Tetrahedron, 2002, 58, 4067-4070.	1.0	10
81	An efficient and robust fluoroketone catalyst epoxidation. Tetrahedron Letters, 2001, 42, 4463-4466.	0.7	43