Andrew Hendry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697332/publications.pdf

Version: 2024-02-01

227 papers

23,092 citations

76 h-index

8181

140 g-index

278 all docs

278 docs citations

times ranked

278

18742 citing authors

#	Article	IF	Citations
1	Benthic–limnetic morphological variation in fishes: Dissolved organic carbon concentration produces unexpected patterns. Ecosphere, 2022, 13, .	2.2	1
2	How might Gyrodactylus parasitism modify trade-offs between female preference and susceptibility of males to predation in Trinidadian guppies?. International Journal for Parasitology, 2022, 52, 459-467.	3.1	3
3	The pace of modern life, revisited. Molecular Ecology, 2022, 31, 1028-1043.	3.9	26
4	Where did the finch go? Insights from radio telemetry of the medium ground finch (<i>Geospiza) Tj ETQq0 0 0 0</i>	gBŢ.¦Over	lock 10 Tf 50
5	Effects of insularity on genetic diversity within and among natural populations. Ecology and Evolution, 2022, 12, e8887.	1.9	1
6	Socioâ€ecoâ€evolutionary dynamics in cities. Evolutionary Applications, 2021, 14, 248-267.	3.1	86
7	Testing the prey naivet $ ilde{A}$ © hypothesis: Can native prey (Astyanax ruberrimus) recognize an introduced top predator, Cichla monoculus?. Biological Invasions, 2021, 23, 205-219.	2.4	7
8	Different refuge types dampen exotic invasion and enhance diversity at the whole ecosystem scale in a heterogeneous river system. Biological Invasions, 2021, 23, 443-460.	2.4	11
9	The importance of genomic variation for biodiversity, ecosystems and people. Nature Reviews Genetics, 2021, 22, 89-105.	16.3	83
10	Resistance and resilience of genetic and phenotypic diversity to "black swan―flood events: A retrospective analysis with historical samples of guppies. Molecular Ecology, 2021, 30, 1017-1028.	3.9	7
11	The complex ecology of genitalia: Gonopodium length and allometry in the Trinidadian guppy. Ecology and Evolution, 2021, 11, 4564-4576.	1.9	2
12	Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highlyâ€variable estuaries. Molecular Ecology, 2021, 30, 2054-2064.	3.9	20
13	Phenotypic stability in scalar calcium of freshwater fish across a wide range of aqueous calcium availability in nature. Ecology and Evolution, 2021, 11, 6053-6065.	1.9	5
14	Clinal genomic analysis reveals strong reproductive isolation across a steep habitat transition in stickleback fish. Nature Communications, 2021, 12, 4850.	12.8	6
15	Using Reciprocal Transplants to Assess Local Adaptation, Genetic Rescue, and Sexual Selection in Newly Established Populations. Genes, 2021, 12, 5.	2.4	2
16	Repeatability of Adaptive Radiation Depends on Spatial Scale: Regional Versus Global Replicates of Stickleback in Lake Versus Stream Habitats. Journal of Heredity, 2020, 111, 43-56.	2.4	17
17	The ecology and evolution of seed predation by Darwin's finches on <i>Tribulus cistoides</i> on the Galápagos Islands. Ecological Monographs, 2020, 90, e01392.	5. 4	15
18	Horizon scan of conservation issues for inland waters in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 869-881.	1.4	10

#	Article	IF	Citations
19	Ecosystem size shapes antipredator trait evolution in estuarine threespine stickleback. Oikos, 2020, 129, 1795-1806.	2.7	10
20	The Complexity of Urban Eco-evolutionary Dynamics. BioScience, 2020, 70, 772-793.	4.9	79
21	Recent declines in salmon body size impact ecosystems and fisheries. Nature Communications, 2020, 11, 4155.	12.8	95
22	Adding the third dimension to studies of parallel evolution of morphology and function: An exploration based on parapatric lakeâ€stream stickleback. Ecology and Evolution, 2020, 10, 13297-13311.	1.9	1
23	Evolutionary origins for ecological patterns in space. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17482-17490.	7.1	55
24	Asymmetric Isolation and the Evolution of Behaviors Influencing Dispersal: Rheotaxis of Guppies above Waterfalls. Genes, 2020, 11, 180.	2.4	6
25	Matching habitat choice: it's not for everyone. Oikos, 2020, 129, 689-699.	2.7	11
26	Comparing Adaptive Radiations Across Space, Time, and Taxa. Journal of Heredity, 2020, 111, 1-20.	2.4	146
27	Independent lineages in a common environment: the roles of determinism and contingency in shaping the migration timing of even―versus oddâ€year pink salmon over broad spatial and temporal scales. Ecology Letters, 2019, 22, 1547-1556.	6.4	4
28	Understanding Maladaptation by Uniting Ecological and Evolutionary Perspectives. American Naturalist, 2019, 194, 495-515.	2.1	60
29	Causes of maladaptation. Evolutionary Applications, 2019, 12, 1229-1242.	3.1	85
30	Developmental temperature affects phenotypic means and variability: A metaâ€analysis of fish data. Fish and Fisheries, 2019, 20, 1005-1022.	5.3	33
31	Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evolutionary Applications, 2019, 12, 1505-1512.	3.1	144
32	Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecology and Evolution, 2019, 9, 4504-4517.	1.9	17
33	Ecosystem tipping points in an evolving world. Nature Ecology and Evolution, 2019, 3, 355-362.	7.8	203
34	Temporally varying disruptive selection in the medium ground finch (Geospiza fortis). Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20192290.	2.6	6
35	Do replicates of independent guppy lineages evolve similarly in a predatorâ€free laboratory environment?. Ecology and Evolution, 2019, 9, 36-51.	1.9	4
36	Genetic insights into the past, present, and future of a keystone species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 344-346.	7.1	6

3

#	Article	IF	Citations
37	A critique for ecoâ€evolutionary dynamics. Functional Ecology, 2019, 33, 84-94.	3.6	62
38	Sexual dimorphism modifies habitatâ€associated divergence: Evidence from beach and creek breeding sockeye salmon. Journal of Evolutionary Biology, 2019, 32, 227-242.	1.7	10
39	Ecoâ€evolutionary feedbacks—Theoretical models and perspectives. Functional Ecology, 2019, 33, 13-30.	3.6	137
40	A roadmap for urban evolutionary ecology. Evolutionary Applications, 2019, 12, 384-398.	3.1	161
41	Female preference for novel males constrains the contemporary evolution of assortative mating in guppies. Behavioral Ecology, 2019, 30, 646-657.	2.2	4
42	100â€year time series reveal little morphological change following impoundment and predator invasion in two Neotropical characids. Evolutionary Applications, 2019, 12, 1385-1401.	3.1	11
43	Urbanization erodes niche segregation in Darwin's finches. Evolutionary Applications, 2019, 12, 1329-1343.	3.1	39
44	Evolutionary Rates Standardized for Evolutionary Space: Perspectives on Trait Evolution. Trends in Ecology and Evolution, 2018, 33, 379-389.	8.7	6
45	Adaptation in temporally variable environments: stickleback armor in periodically breaching barâ€built estuaries. Journal of Evolutionary Biology, 2018, 31, 735-752.	1.7	21
46	The ecological importance of intraspecific variation. Nature Ecology and Evolution, 2018, 2, 57-64.	7.8	570
47	What genomic data can reveal about eco-evolutionary dynamics. Nature Ecology and Evolution, 2018, 2, 9-15.	7.8	68
48	A Tale of Two Islands: The Established Researcher. Bulletin of the Ecological Society of America, 2018, 99, e01457.	0.2	0
49	Human influences on the strength of phenotypic selection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10070-10075.	7.1	53
50	Melanin-based coloration and host–parasite interactions under global change. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180285.	2.6	25
51	Keystone Genes. Trends in Ecology and Evolution, 2018, 33, 689-700.	8.7	26
52	The Contemporary Evolution of Fitness. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 457-476.	8.3	88
53	How Parallel Is Parallel Evolution? A Comparative Analysis in Fishes. American Naturalist, 2017, 190, 1-16.	2.1	107
54	Contrasting effects of environment and genetics generate a continuum of parallel evolution. Nature Ecology and Evolution, 2017, 1, 158.	7.8	188

#	Article	IF	Citations
55	Human influences on evolution, and the ecological and societal consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160028.	4.0	202
56	Global urban signatures of phenotypic change in animal and plant populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8951-8956.	7.1	369
57	Predator-induced Contemporary Evolution, Phenotypic Plasticity, and the Evolution of Reaction Norms in Guppies. Copeia, 2017, 105, 514-522.	1.3	13
58	Experimental Assessment in Nature of the Ecological Effects of a Specialist Parasite. Copeia, 2017, 105, 494-503.	1.3	6
59	Eco-Evolutionary Dynamics in Cold Blood. Copeia, 2017, 105, 441-450.	1.3	5
60	Manyâ€toâ€one formâ€toâ€function mapping weakens parallel morphological evolution. Evolution; International Journal of Organic Evolution, 2017, 71, 2738-2749.	2.3	37
61	Future Benefits from Contemporary Evosystem Services: A Response to Rudman et al Trends in Ecology and Evolution, 2017, 32, 717-719.	8.7	3
62	Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nature Communications, 2017, 8, 1294.	12.8	51
63	Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary Applications, 2017, 10, 121-139.	3.1	145
64	Heritable gene expression differences between lake and stream stickleback include both parallel and antiparallel components. Heredity, 2017, 119, 339-348.	2.6	22
65	The context dependence of assortative mating: a demonstration with conspecific salmonid populations. Journal of Evolutionary Biology, 2016, 29, 1827-1835.	1.7	8
66	Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies. Journal of Evolutionary Biology, 2016, 29, 1406-1422.	1.7	24
67	An experimental test of antagonistic effects of competition and parasitism on host performance in semiâ€natural mesocosms. Oikos, 2016, 125, 790-796.	2.7	6
68	When Should Harvest Evolution Matter to Population Dynamics?. Trends in Ecology and Evolution, 2016, 31, 500-502.	8.7	10
69	Improving the forecast for biodiversity under climate change. Science, 2016, 353, .	12.6	780
70	Assessing reproductive isolation using a contact zone between parapatric lakeâ€stream stickleback ecotypes. Journal of Evolutionary Biology, 2016, 29, 2491-2501.	1.7	16
71	Parting ways: parasite release in nature leads to sexâ€specific evolution of defence. Journal of Evolutionary Biology, 2016, 29, 23-34.	1.7	18
72	Does plasticity enhance or dampen phenotypic parallelism? A test with three lake–stream stickleback pairs. Journal of Evolutionary Biology, 2016, 29, 126-143.	1.7	63

#	Article	lF	CITATIONS
73	Genomic variation at the tips of the adaptive radiation of Darwin's finches. Molecular Ecology, 2016, 25, 5282-5295.	3.9	95
74	Testing for parallel allochronic isolation in lake–stream stickleback. Journal of Evolutionary Biology, 2016, 29, 47-57.	1.7	10
75	Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary Dynamics. Journal of Heredity, 2016, 107, 25-41.	2.4	253
76	Evolutionary Restoration Ecology. , 2016, , 427-454.		5
77	Do stressful conditions make adaptation difficult? Guppies in the oilâ€polluted environments of southern Trinidad. Evolutionary Applications, 2015, 8, 854-870.	3.1	39
78	Cryptic ecoâ€evolutionary dynamics. Annals of the New York Academy of Sciences, 2015, 1360, 120-144.	3.8	62
79	When maladaptive gene flow does not increase selection. Evolution; International Journal of Organic Evolution, 2015, 69, 2289-2302.	2.3	11
80	How maladaptation can structure biodiversity: eco-evolutionary island biogeography. Trends in Ecology and Evolution, 2015, 30, 154-160.	8.7	34
81	Host preference of an introduced â€~generalist' parasite for a non-native host. International Journal for Parasitology, 2015, 45, 703-709.	3.1	15
82	Testing for local host–parasite adaptation: an experiment with Gyrodactylus ectoparasites and guppy hosts. International Journal for Parasitology, 2015, 45, 409-417.	3.1	23
83	Linking macrotrends and microrates: Re-evaluating microevolutionary support for Cope's rule. Evolution; International Journal of Organic Evolution, 2015, 69, 1345-1354.	2.3	34
84	Speciation without Pre-Defined Fitness Functions. PLoS ONE, 2015, 10, e0137838.	2.5	15
85	Two decades of genetic profiling yields first evidence of natal philopatry and longâ€ŧerm fidelity to parturition sites in sharks. Molecular Ecology, 2014, 23, 110-117.	3.9	139
86	Asymmetric reproductive barriers and mosaic reproductive isolation: insights from ⟨scp⟩M⟨/scp⟩isty lake–stream stickleback. Ecology and Evolution, 2014, 4, 1166-1175.	1.9	18
87	SOLVING THE PARADOX OF STASIS: SQUASHED STABILIZING SELECTION AND THE LIMITS OF DETECTION. Evolution; International Journal of Organic Evolution, 2014, 68, 483-500.	2.3	104
88	The genomic signature of parallel adaptation from shared genetic variation. Molecular Ecology, 2014, 23, 3944-3956.	3.9	162
89	Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 2014, 7, 1-14.	3.1	952
90	Using adaptive traits to consider potential consequences of temporal variation in selection: male guppy colour through time and space. Biological Journal of the Linnean Society, 2014, 112, 108-122.	1.6	18

#	Article	IF	Citations
91	Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists. Journal of Evolutionary Biology, 2014, 27, 1093-1104.	1.7	73
92	Experimental evolution of parasite resistance in wild guppies: natural and multifarious selection. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141820.	2.6	1
93	Biodiversity only makes sense in the light of evolution. Journal of Biosciences, 2014, 39, 333-337.	1.1	9
94	A Tale of Two Morphs: Modeling Pollen Transfer, Magic Traits, and Reproductive Isolation in Parapatry. PLoS ONE, 2014, 9, e106512.	2.5	11
95	Adding parasites to the guppy-predation story: insights from field surveys. Oecologia, 2013, 172, 155-166.	2.0	37
96	Eco-Evolutionary Dynamics: Community Consequences of (Mal)Adaptation. Current Biology, 2013, 23, R869-R871.	3.9	4
97	Key questions in the genetics and genomics of eco-evolutionary dynamics. Heredity, 2013, 111, 456-466.	2.6	71
98	Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132371.	2.6	40
99	Possible influences of plasticity and genetic/maternal effects on species coexistence: native <i><scp>G</scp>ammarus fasciatus</i> facing exotic amphipods. Functional Ecology, 2013, 27, 1212-1223.	3.6	6
100	EVOLUTIONARY INFERENCES FROM THE ANALYSIS OF EXCHANGEABILITY. Evolution; International Journal of Organic Evolution, 2013, 67, 3429-3441.	2.3	21
101	Evolutionary rescue under environmental change?. , 2012, , 216-233.		31
102	Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia, 2012, 170, 77-88.	2.0	26
103	Magic traits: distinguishing the important from the trivial. Trends in Ecology and Evolution, 2012, 27, 4-5.	8.7	13
104	Factors Influencing Progress toward Ecological Speciation. International Journal of Ecology, 2012, 2012, 1-7.	0.8	31
105	Divergent Selection and Then What Not: The Conundrum of Missing Reproductive Isolation in Misty Lake and Stream Stickleback. International Journal of Ecology, 2012, 2012, 1-14.	0.8	16
106	Population divergence of private and non-private signals in wild guppies. Environmental Biology of Fishes, 2012, 94, 513-525.	1.0	28
107	PARALLEL AND NONPARALLEL ASPECTS OF ECOLOGICAL, PHENOTYPIC, AND GENETIC DIVERGENCE ACROSS REPLICATE POPULATION PAIRS OF LAKE AND STREAM STICKLEBACK. Evolution; International Journal of Organic Evolution, 2012, 66, 402-418.	2.3	187
108	Reciprocal trophic niche shifts in native and invasive fish: salmonids and galaxiids in Patagonian lakes. Freshwater Biology, 2012, 57, 1769-1781.	2.4	47

#	Article	IF	CITATIONS
109	Fates beyond traits: ecological consequences of humanâ€induced trait change. Evolutionary Applications, 2012, 5, 183-191.	3.1	200
110	Genome divergence during evolutionary diversification as revealed in replicate lake–stream stickleback population pairs. Molecular Ecology, 2012, 21, 2852-2862.	3.9	222
111	Genetic divergence in morphology-performance mapping between Misty Lake and inlet stickleback. Journal of Evolutionary Biology, 2011, 24, 23-35.	1.7	54
112	The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 2011, 24, 326-342.	1.7	163
113	Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation. Journal of Evolutionary Biology, 2011, 24, 1975-1983.	1.7	52
114	Factors influencing progress toward sympatric speciation. Journal of Evolutionary Biology, 2011, 24, 2186-2196.	1.7	38
115	EXPLORING POSSIBLE HUMAN INFLUENCES ON THE EVOLUTION OF DARWIN'S FINCHES. Evolution; International Journal of Organic Evolution, 2011, 65, 2258-2272.	2.3	46
116	Environmental factors influencing adult sex ratio in Poecilia reticulata: laboratory experiments. Journal of Fish Biology, 2011, 79, 937-953.	1.6	7
117	Eco-evolutionary dynamics in Pacific salmon. Heredity, 2011, 106, 438-447.	2.6	110
118	Anthropogenic disturbance and evolutionary parameters: a lemon shark population experiencing habitat loss. Evolutionary Applications, 2011, 4, 1-17.	3.1	31
119	Evolutionary principles and their practical application. Evolutionary Applications, 2011, 4, 159-183.	3.1	230
120	Ecoâ€evolutionary effects on population recovery following catastrophic disturbance. Evolutionary Applications, 2011, 4, 354-366.	3.1	31
121	Does sexual selection evolve following introduction to new environments?. Animal Behaviour, 2011, 82, 1085-1095.	1.9	11
122	Communication in troubled waters: responses of fish communication systems to changing environments. Evolutionary Ecology, 2011, 25, 623-640.	1,2	120
123	Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Current Opinion in Environmental Sustainability, 2010, 2, 66-74.	6.3	168
124	SPATIOTEMPORAL VARIATION IN LINEAR NATURAL SELECTION ON BODY COLOR IN WILD GUPPIES (POECILIA) 1	Гј Е <u>Т</u> Зq0 () 0 ggBT /Overl
125	EVOLUTIONARY BIOLOGY IN BIODIVERSITY SCIENCE, CONSERVATION, AND POLICY: A CALL TO ACTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1517-28.	2.3	87
126	When can ecological speciation be detected with neutral loci?. Molecular Ecology, 2010, 19, 2301-2314.	3.9	85

#	Article	IF	Citations
127	Constraints on speciation suggested by comparing lakeâ€stream stickleback divergence across two continents. Molecular Ecology, 2010, 19, 4963-4978.	3.9	81
128	Testing the influence of local forest canopy clearing on phenotypic variation in Trinidadian guppies. Functional Ecology, 2010, 24, 354-364.	3.6	23
129	Testing for mating isolation between ecotypes: laboratory experiments with lake, stream and hybrid stickleback. Journal of Evolutionary Biology, 2010, 23, 2694-2708.	1.7	41
130	Both Geography and Ecology Contribute to Mating Isolation in Guppies. PLoS ONE, 2010, 5, e15659.	2.5	17
131	Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin's finches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1041-1052.	4.0	77
132	Natural and Sexual Selection Giveth and Taketh Away Reproductive Barriers: Models of Population Divergence in Guppies. American Naturalist, 2010, 176, 26-39.	2.1	89
133	Eco-evolutionary dynamics: intertwining ecological and evolutionary processes in contemporary time. F1000 Biology Reports, 2010, 2, .	4.0	36
134	How Humans Differ from Other Animals in Their Levels of Morphological Variation. PLoS ONE, 2009, 4, e6876.	2.5	32
135	Eco-evolutionary dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1483-1489.	4.0	444
136	Can gene flow have negative demographic consequences? Mixed evidence from stream threespine stickleback. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 1533-1542.	4.0	30
137	SYNTHESIS: Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evolutionary Applications, 2009, 2, 260-275.	3.1	279
138	Environmental factors influencing adult sex ratio in Trinidadian guppies. Oecologia, 2009, 159, 735-745.	2.0	42
139	Force–velocity tradeâ€off in Darwin's finch jaw function: a biomechanical basis for ecological speciation?. Functional Ecology, 2009, 23, 119-125.	3.6	123
140	Speciation. Nature, 2009, 458, 162-164.	27.8	24
141	EVOLUTIONARY POTENTIAL OF A LARGE MARINE VERTEBRATE: QUANTITATIVE GENETIC PARAMETERS IN A WILD POPULATION. Evolution; International Journal of Organic Evolution, 2009, 63, 1051-1067.	2.3	31
142	VARIABLE PROGRESS TOWARD ECOLOGICAL SPECIATION IN PARAPATRY: STICKLEBACK ACROSS EIGHT LAKE-STREAM TRANSITIONS. Evolution; International Journal of Organic Evolution, 2009, 63, 1740-1753.	2.3	180
143	Along the speciation continuum in sticklebacks. Journal of Fish Biology, 2009, 75, 2000-2036.	1.6	220
144	Five questions on ecological speciation addressed with individualâ€based simulations. Journal of Evolutionary Biology, 2009, 22, 109-123.	1.7	81

#	Article	IF	CITATIONS
145	Adaptive Changes in Life History and Survival following a New Guppy Introduction. American Naturalist, 2009, 174, 34-45.	2.1	77
146	Disruptive selection in a bimodal population of Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 753-759.	2.6	98
147	Relaxed selection in the wild. Trends in Ecology and Evolution, 2009, 24, 487-496.	8.7	495
148	Ecological speciation! Or the lack thereof?This Perspective is based on the author's J.C. Stevenson Memorial Lecture delivered at the Canadian Conference for Fisheries Research in Halifax, Nova Scotia, January 2008 Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1383-1398.	1.4	182
149	Whither adaptation?. Biology and Philosophy, 2008, 23, 673-699.	1.4	59
150	Darwin in the fossils. Nature, 2008, 451, 779-780.	27.8	35
151	Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 2008, 11, 624-636.	6.4	252
152	A geometric morphometric appraisal of beak shape in Darwin's finches. Journal of Evolutionary Biology, 2008, 21, 263-275.	1.7	73
153	Natural selection drives patterns of lake–stream divergence in stickleback foraging morphology. Journal of Evolutionary Biology, 2008, 21, 1653-1665.	1.7	156
154	Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 2008, 17, 20-29.	3.9	592
155	Are indirect genetic benefits associated with polyandry? Testing predictions in a natural population of lemon sharks. Molecular Ecology, 2008, 17, 783-795.	3.9	80
156	A genetic assessment of polyandry and breedingâ€site fidelity in lemon sharks. Molecular Ecology, 2008, 17, 3337-3351.	3.9	65
157	Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications, 2008, 1, 252-270.	3.1	379
158	Genetic and plastic components of divergent male intersexual behavior in Misty lake/stream stickleback. Behavioral Ecology, 2008, 19, 1217-1224.	2.2	17
159	Reproductive isolation of sympatric morphs in a population of Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1709-1714.	2.6	114
160	Predation by Bears Drives Senescence in Natural Populations of Salmon. PLoS ONE, 2007, 2, e1286.	2.5	46
161	The Elvis paradox. Nature, 2007, 446, 147-149.	27.8	8
162	Growth rate differences between resident native brook trout and non-native brown trout. Journal of Fish Biology, 2007, 71, 1430-1447.	1.6	31

#	Article	IF	CITATIONS
163	When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks. Journal of Evolutionary Biology, 2007, 20, 201-212.	1.7	97
164	This isnotd \tilde{A} \otimes \tilde{J} vu all over again: male guppy colour in a new experimental introduction. Journal of Evolutionary Biology, 2007, 20, 1339-1350.	1.7	28
165	The multifarious effects of dispersal and gene flow on contemporary adaptation. Functional Ecology, 2007, 21, 434-443.	3.6	453
166	Evolution on ecological time-scales. Functional Ecology, 2007, 21, 387-393.	3.6	539
167	Evolutionary Responses to Climate Change. Conservation Biology, 2007, 21, 1353-1355.	4.7	220
168	QUANTIFYING THE CONSTRAINING INFLUENCE OF GENE FLOW ON ADAPTIVE DIVERGENCE IN THE LAKE-STREAM THREESPINE STICKLEBACK SYSTEM. Evolution; International Journal of Organic Evolution, 2007, 61, 2015-2026.	2.3	98
169	The speed of ecological speciation. Functional Ecology, 2007, 21, 455-464.	3.6	277
170	Contemporary evolution meets conservation biology II: impediments to integration and application. Ecological Research, 2007, 22, 947-954.	1.5	48
171	The speed of ecological speciation. Functional Ecology, 2007, 21, 455-464.	3.6	135
172	Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology, 2006, 19, 741-754.	1.7	132
173	Disentangling the selective factors that act on male colour in wild guppies. Oikos, 2006, 113, 1-12.	2.7	98
174	Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1887-1894.	2.6	122
175	The Biomechanics of Ecological Speciation. , 2006, , 301-321.		9
176	The Biomechanics of Ecological Speciation. , 2006, , 301-321.		0
177	Characterization of tetranucleotide microsatellite markers in guppy (Poecilia reticulata). Molecular Ecology Notes, 2005, 5, 269-271.	1.7	21
178	Evolution of bite force in Darwin's finches: a key role for head width. Journal of Evolutionary Biology, 2005, 18, 669-675.	1.7	134
179	Population structure attributable to reproductive time: isolation by time and adaptation by time. Molecular Ecology, 2005, 14, 901-916.	3.9	349
180	The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 2005, 15, 49-62.	3.9	266

#	Article	IF	Citations
181	The power of natural selection. Nature, 2005, 433, 694-695.	27.8	22
182	Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Functional Ecology, 2005, 19, 43-48.	3.6	193
183	Does time since colonization influence isolation by distance? A meta-analysis. Conservation Genetics, 2005, 6, 665-682.	1.5	59
184	Rapid Senescence in Pacific Salmon. American Naturalist, 2005, 166, 556-568.	2.1	43
185	Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 259-266.	2.6	103
186	HOW MUCH OF THE VARIATION IN ADAPTIVE DIVERGENCE CAN BE EXPLAINED BY GENE FLOW? AN EVALUATION USING LAKE-STREAM STICKLEBACK PAIRS. Evolution; International Journal of Organic Evolution, 2004, 58, 2319.	2.3	19
187	Energy use in spawning Atlantic salmon. Ecology of Freshwater Fish, 2004, 13, 185-196.	1.4	46
188	HOW MUCH OF THE VARIATION IN ADAPTIVE DIVERGENCE CAN BE EXPLAINED BY GENE FLOW? AN EVALUATION USING LAKE-STREAM STICKLEBACK PAIRS. Evolution; International Journal of Organic Evolution, 2004, 58, 2319-2331.	2.3	314
189	Brown bears selectively kill salmon with higher energy content but only in habitats that facilitate choice. Oikos, 2004, 104, 518-528.	2.7	7 3
190	Estimating Natural Selection Acting on Stream-Dwelling Atlantic Salmon: Implications for the Restoration of Extirpated Populations. Conservation Biology, 2003, 17, 795-805.	4.7	51
191	Contemporary evolution meets conservation biology. Trends in Ecology and Evolution, 2003, 18, 94-101.	8.7	858
192	Egg-size evolution in aquatic environments: does oxygen availability constrain size?. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2325-2330.	2.6	133
193	ADAPTIVE DIVERGENCE AND THE BALANCE BETWEEN SELECTION AND GENE FLOW: LAKE AND STREAM STICKLEBACK IN THE MISTY SYSTEM. Evolution; International Journal of Organic Evolution, 2002, 56, 1199.	2.3	24
194	Genetic and Phenotypic Variation through the Migratory Season Provides Evidence for Multiple Populations of Wild Steelhead in the Dean River, British Columbia. Transactions of the American Fisheries Society, 2002, 131, 418-434.	1.4	35
195	QST > = ≠< FST?. Trends in Ecology and Evolution, 2002, 17, 502.	8.7	65
196	ADAPTIVE DIVERGENCE AND THE BALANCE BETWEEN SELECTION AND GENE FLOW: LAKE AND STREAM STICKLEBACK IN THE MISTY SYSTEM. Evolution; International Journal of Organic Evolution, 2002, 56, 1199-1216.	2.3	294
197	Optimal Size and Number of Propagules: Allowance for Discrete Stages and Effects of Maternal Size on Reproductive Output and Offspring Fitness. American Naturalist, 2001, 157, 387-407.	2.1	181
198	Maternal provisioning of offspring and the use of those resources during ontogeny: variation within and between Atlantic Salmon families. Functional Ecology, 2001, 15, 13-23.	3.6	74

#	Article	IF	CITATIONS
199	Breeding location choice in salmon: causes (habitat, competition, body size, energy stores) and consequences (life span, energy stores). Oikos, 2001, 93, 407-418.	2.7	51
200	Title is missing!. Genetica, 2001, 112/113, 515-534.	1.1	88
201	The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica, 2001, 112/113, 145-164.	1.1	291
202	MIGRATORY COSTS AND THE EVOLUTION OF EGG SIZE AND NUMBER IN INTRODUCED AND INDIGENOUS SALMON POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1656-1667.	2.3	184
203	POPULATION MIXING AND THE ADAPTIVE DIVERGENCE OF QUANTITATIVE TRAITS IN DISCRETE POPULATIONS: A THEORETICAL FRAMEWORK FOR EMPIRICAL TESTS. Evolution; International Journal of Organic Evolution, 2001, 55, 459.	2.3	206
204	MIGRATORY COSTS AND THE EVOLUTION OF EGG SIZE AND NUMBER IN INTRODUCED AND INDIGENOUS SALMON POPULATIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1656.	2.3	13
205	The pace of modern life II: From rates of contemporary microevolution to pattern and process. Contemporary Issues in Genetics and Evolution, 2001, , 145-164.	0.9	99
206	POPULATION MIXING AND THE ADAPTIVE DIVERGENCE OF QUANTITATIVE TRAITS IN DISCRETE POPULATIONS: A THEORETICAL FRAMEWORK FOR EMPIRICAL TESTS. Evolution; International Journal of Organic Evolution, 2001, 55, 459-466.	2.3	23
207	An introduction to microevolution: Rate, pattern, process. Contemporary Issues in Genetics and Evolution, 2001, , 1-8.	0.9	27
208	Adaptive divergence and the evolution of reproductive isolation in the wild: An empirical demonstration using introduced sockeye salmon. Contemporary Issues in Genetics and Evolution, 2001, , 515-534.	0.9	17
209	An introduction to microevolution: rate, pattern, process. Genetica, 2001, 112-113, 1-8.	1.1	22
210	The pace of modern life II: from rates of contemporary microevolution to pattern and process. Genetica, 2001, 112-113, 145-64.	1.1	72
211	Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica, 2001, 112-113, 515-34.	1.1	18
212	Proximate Composition, Reproductive Development, and a Test for Trade-Offs in Captive Sockeye Salmon. Transactions of the American Fisheries Society, 2000, 129, 1082-1095.	1.4	31
213	Questioning species realities. Conservation Genetics, 2000, 1, 67-76.	1.5	100
214	Rapid Evolution of Reproductive Isolation in the Wild: Evidence from Introduced Salmon. Science, 2000, 290, 516-518.	12.6	477
215	Perspective: The Pace of Modern Life: Measuring Rates of Contemporary Microevolution. Evolution; International Journal of Organic Evolution, 1999, 53, 1637.	2.3	352
216	Secondary sexual characters, energy use, senescence, and the cost of reproduction in sockeye salmon. Canadian Journal of Zoology, 1999, 77, 1663-1675.	1.0	190

#	Article	IF	CITATIONS
217	Condition Dependence and Adaptation-by-Time: Breeding Date, Life History, and Energy Allocation within a Population of Salmon. Oikos, 1999, 85, 499.	2.7	99
218	Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1999, 77, 766-775.	1.0	73
219	PERSPECTIVE: THE PACE OF MODERN LIFE: MEASURING RATES OF CONTEMPORARY MICROEVOLUTION. Evolution; International Journal of Organic Evolution, 1999, 53, 1637-1653.	2.3	539
220	Natural otolith microstructure patterns reveal precise homing to natal incubation sites by sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1999, 77, 766-775.	1.0	16
221	Taking time with microevolution. Trends in Ecology and Evolution, 1998, 13, 76-77.	8.7	5
222	Incubation temperature, developmental biology, and the divergence of sockeye salmon (<i>Oncorhynchus nerka</i>) within Lake Washington. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1387-1394.	1.4	93
223	Rheotactic response of fry from beach-spawning populations of sockeye salmon: evolution after selection is relaxed. Canadian Journal of Zoology, 1998, 76, 2186-2193.	1.0	13
224	Variation in adult life history and morphology among Lake Washington sockeye salmon (<i>Oncorhynchus nerka</i>) populations in relation to habitat features and ancestral affinities. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 75-84.	1.4	73
225	Genetic evidence for the persistence and divergence of native and introduced sockeye salmon (<i>Oncorhynchus nerka</i>) within Lake Washington, Washington. Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53, 823-832.	1.4	41
226	The Influence of Life History Trade-Offs and the Size of Incubation Gravels on Egg Size Variation in Sockeye Salmon (Oncorhynchus nerka). Oikos, 1995, 74, 425.	2.7	142
227	Spatial and temporal isolating mechanisms: the formation of discrete breeding aggregations of sockeye salmon (<i>Oncorhynchus nerka</i>). Canadian Journal of Zoology, 1995, 73, 339-352.	1.0	55