Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697205/publications.pdf

Version: 2024-02-01

42 papers

4,981 citations

32 h-index 288905 40 g-index

44 all docs

44 docs citations

times ranked

44

5012 citing authors

#	Article	IF	CITATIONS
1	Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Research, 2022, 15, 10029-10036.	5.8	7
2	Impregnating Subnanometer Metallic Nanocatalysts into Self-Pillared Zeolite Nanosheets. Journal of the American Chemical Society, 2021, 143, 6905-6914.	6.6	124
3	Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nature Communications, 2021, 12, 2664.	5.8	111
4	Advances in Catalytic Applications of Zeoliteâ€Supported Metal Catalysts. Advanced Materials, 2021, 33, e2104442.	11.1	113
5	Frontispiz: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, .	1.6	O
6	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie, 2020, 132, 20358-20366.	1.6	22
7	Zeoliteâ€Encaged Pd–Mn Nanocatalysts for CO ₂ Hydrogenation and Formic Acid Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 20183-20191.	7.2	175
8	Frontispiece: Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, .	7.2	5
9	Circularly Polarized Roomâ€Temperature Phosphorescence and Encapsulation Engineering for MOFâ€Based Fluorescent/Phosphorescent White Lightâ€Emitting Devices. Advanced Optical Materials, 2020, 8, 2000330.	3.6	90
10	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19450-19459.	7.2	221
11	Nanoporeâ€Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquidâ€Phase Chemical Hydrogen Storage Materials. Advanced Materials, 2020, 32, e2001818.	11.1	226
12	Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19618-19627.	1.6	47
13	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie, 2019, 131, 18743-18749.	1.6	26
14	Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes. Angewandte Chemie - International Edition, 2019, 58, 18570-18576.	7.2	281
15	Template-Modulated Afterglow of Carbon Dots in Zeolites: Room-Temperature Phosphorescence and Thermally Activated Delayed Fluorescence., 2019, 1, 58-63.		92
16	Synergetic Effect of Ultrasmall Metal Clusters and Zeolites Promoting Hydrogen Generation. Advanced Science, 2019, 6, 1802350.	5.6	70
17	Innentitelbild: Zeoliteâ€Encaged Singleâ€Atom Rhodium Catalysts: Highlyâ€Efficient Hydrogen Generation and Shapeâ€Selective Tandem Hydrogenation of Nitroarenes (Angew. Chem. 51/2019). Angewandte Chemie, 2019, 131, 18466-18466.	1.6	0
18	Ultrasmall Metal Nanoparticles Confined within Crystalline Nanoporous Materials: A Fascinating Class of Nanocatalysts. Advanced Materials, 2019, 31, e1803966.	11.1	260

#	Article	IF	CITATIONS
19	Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites. Journal of Materials Chemistry A, 2018, 6, 8757-8762.	5.2	77
20	Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chemical Communications, 2018, 54, 3697-3700.	2.2	54
21	A new two-dimensional layered germanate with <i>in situ</i> embedded carbon dots for optical temperature sensing. Inorganic Chemistry Frontiers, 2018, 5, 139-144.	3.0	25
22	A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368.	11.1	204
23	Mesoporogenâ€Free Synthesis of Hierarchical SAPOâ€34 with Low Template Consumption and Excellent Methanolâ€toâ€Olefin Conversion. ChemSusChem, 2018, 11, 3812-3820.	3.6	40
24	Synthesis of hierarchical TS-1 zeolites with abundant and uniform intracrystalline mesopores and their highly efficient catalytic performance for oxidation desulfurization. Journal of Materials Chemistry A, 2017, 5, 7992-7998.	5.2	100
25	Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes. Science Advances, 2017, 3, e1603171.	4.7	286
26	Subnanometric Hybrid Pd-M(OH)2, MÂ= Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. CheM, 2017, 3, 477-493.	5.8	212
27	Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nature Communications, 2017, 8, 575.	5.8	143
28	Simple Quaternary Ammonium Cations-Templated Syntheses of Extra-Large Pore Germanosilicate Zeolites. Chemistry of Materials, 2016, 28, 6455-6458.	3.2	46
29	A top-down approach to hierarchical SAPO-34 zeolites with improved selectivity of olefin. Microporous and Mesoporous Materials, 2016, 234, 401-408.	2.2	86
30	Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. Journal of Materials Chemistry A, 2016, 4, 14978-14982.	5.2	107
31	In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 2016, 138, 7484-7487.	6.6	507
32	A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chemical Communications, 2016, 52, 3368-3371.	2.2	109
33	A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chemical Communications, 2016, 52, 3580-3583.	2.2	108
34	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	3.7	99
35	The recyclable synthesis of hierarchical zeolite SAPO-34 with excellent MTO catalytic performance. Chemical Communications, 2015, 51, 11987-11989.	2.2	57
36	Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. Journal of Materials Chemistry A, 2015, 3, 19783-19789.	5.2	121

#	ARTICLE	IF	CITATION
37	Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chemical Communications, 2015, 51, 16397-16400.	2.2	78
38	Influence of temperature and space velocity on the MTO reaction over nano sheet-like SAPO-34 catalyst and the theoretical calculation. Scientia Sinica Chimica, 2015, 45, 383-390.	0.2	0
39	Confinement Effect of Zeolite Cavities on Methanol-to-Olefin Conversion: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 118, 24935-24940.	1.5	32
40	Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chemical Communications, 2014, 50, 6502.	2.2	179
41	High performance nanosheet-like silicoaluminophosphate molecular sieves: synthesis, 3D EDT structural analysis and MTO catalytic studies. Journal of Materials Chemistry A, 2014, 2, 17828-17839.	5. 2	96
42	Fluorinated Benzothiadiazole-Based Conjugated Polymers for High-Performance Polymer Solar Cells without Any Processing Additives or Post-treatments. Journal of the American Chemical Society, 2013, 135, 17060-17068.	6.6	327