Antje Labes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697168/publications.pdf Version: 2024-02-01

ANTIE LADEC

#	Article	IF	CITATIONS
1	Optimization of Astaxanthin Recovery in the Downstream Process of Haematococcus pluvialis. Foods, 2022, 11, 1352.	4.3	7
2	Editorial: Marine Microbial-Derived Molecules and Their Potential Medical and Cosmetic Applications. Frontiers in Microbiology, 2021, 12, 706152.	3.5	4
3	16 Biotechnology of Marine Fungi: New Workhorses and Applications. , 2020, , 399-412.		1
4	Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina. Marine Drugs, 2019, 17, 419.	4.6	20
5	Influence of OSMAC-Based Cultivation in Metabolome and Anticancer Activity of Fungi Associated with the Brown Alga Fucus vesiculosus. Marine Drugs, 2019, 17, 67.	4.6	30
6	Combined genotyping, microbial diversity and metabolite profiling studies on farmed Mytilus spp. from Kiel Fjord. Scientific Reports, 2018, 8, 7983.	3.3	25
7	Molecular Networking-Based Metabolome and Bioactivity Analyses of Marine-Adapted Fungi Co-cultivated With Phytopathogens. Frontiers in Microbiology, 2018, 9, 2072.	3.5	56
8	How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry. Marine Genomics, 2017, 36, 57-75.	1.1	41
9	Navigating the Future: Cross-sector Marine Genomics. Marine Genomics, 2017, 36, 1-2.	1.1	0
10	Establishing the Secondary Metabolite Profile of the Marine Fungus: Tolypocladium geodes sp. MF458 and Subsequent Optimisation of Bioactive Secondary Metabolite Production. Marine Drugs, 2017, 15, 84.	4.6	27
11	From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Marine Drugs, 2016, 14, 137.	4.6	74
12	Marine Fungi as Producers of Benzocoumarins, a New Class of Inhibitors of Glycogen-Synthase-Kinase 3β. Marine Drugs, 2016, 14, 200.	4.6	14
13	Phylogenetic Relationship and Secondary Metabolite Production of Marine Fungi Producing the Cyclodepsipeptides Scopularide A and B. Marine Biotechnology, 2016, 18, 466-474.	2.4	8
14	Lindgomycin, an Unusual Antibiotic Polyketide from a Marine Fungus of the Lindgomycetaceae. Marine Drugs, 2015, 13, 4617-4632.	4.6	66
15	Identification of Habitat-Specific Biomes of Aquatic Fungal Communities Using a Comprehensive Nearly Full-Length 18S rRNA Dataset Enriched with Contextual Data. PLoS ONE, 2015, 10, e0134377.	2.5	62
16	Proteomic Analysis of Anti-Cancerous Scopularide Production by a Marine Microascus brevicaulis Strain and Its UV Mutant. PLoS ONE, 2015, 10, e0140047.	2.5	14
17	Development and Validation of a Fast and Optimized Screening Method for Enhanced Production of Secondary Metabolites Using the Marine Scopulariopsis brevicaulis Strain LF580 Producing Anti-Cancer Active Scopularide A and B. PLoS ONE, 2014, 9, e103320.	2.5	17
18	Malettinin E, an antibacterial and antifungal tropolone produced by a marine Cladosporium strain. Frontiers in Marine Science, 2014, 1, .	2.5	17

Antje Labes

#	Article	IF	CITATIONS
19	Production of scopularide A in submerged culture with Scopulariopsis brevicaulis. Microbial Cell Factories, 2014, 13, 89.	4.0	10
20	Nature's Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived Streptomyces Strain. Marine Drugs, 2014, 12, 1699-1714.	4.6	28
21	A Phenotypic Screening Approach to Identify Anticancer Compounds Derived from Marine Fungi. Assay and Drug Development Technologies, 2014, 12, 162-175.	1.2	9
22	Calcaripeptides A–C, Cyclodepsipeptides from a <i>Calcarisporium</i> Strain. Journal of Natural Products, 2013, 76, 1461-1467.	3.0	26
23	Algae as an important environment for bacteria – phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 2013, 52, 14-24.	1.4	149
24	Phylogenetic analysis and antibiotic activity of bacteria isolated from the surface of two co-occurring macroalgae from the Baltic Sea. European Journal of Phycology, 2013, 48, 47-60.	2.0	39
25	Calcarides A–E, Antibacterial Macrocyclic and Linear Polyesters from a Calcarisporium Strain. Marine Drugs, 2013, 11, 3309-3323.	4.6	44
26	Dual effect of macroalgal extracts on growth of bacteria in Western Baltic Sea. Revista De Biologia Marina Y Oceanografia, 2012, 47, 75-86.	0.2	19
27	A Novel Phytomyxean Parasite Associated with Galls on the Bull-Kelp Durvillaea antarctica (Chamisso) Hariot. PLoS ONE, 2012, 7, e45358.	2.5	22
28	The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms. Frontiers in Microbiology, 2012, 3, 292.	3.5	423
29	First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiological Research, 2012, 167, 262-269.	5.3	26
30	Observation of bacteria over the surface of released oogonia from Fucus vesiculosus L. (Phaeophyceae). Gayana - Botanica, 2012, 69, 376-379.	0.2	18
31	Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 2011, 29, 468-482.	11.7	270
32	Chemical interactions between marine macroalgae and bacteria. Marine Ecology - Progress Series, 2010, 409, 267-299.	1.9	416
33	Comprehensive Investigation of Marine <i>Actinobacteria</i> Associated with the Sponge <i>Halichondria panicea</i> . Applied and Environmental Microbiology, 2010, 76, 3702-3714.	3.1	105
34	Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia (Poland), 2008, 63, 1006-1014.	1.5	11
35	Novel Members of Glycoside Hydrolase Family 13 Derived from Environmental DNA. Applied and Environmental Microbiology, 2008, 74, 1914-1921.	3.1	28
36	Unusual Starch Degradation Pathway via Cyclodextrins in the Hyperthermophilic Sulfate-Reducing Archaeon <i>Archaeoglobus fulgidus</i> Strain 7324. Journal of Bacteriology, 2007, 189, 8901-8913.	2.2	32

#	Article	IF	CITATIONS
37	Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. Journal of Bioscience and Bioengineering, 2005, 100, 380-390.	2.2	30