
Graham S Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4697141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 40-49.	7.0	145
2	LRR-protein RNH1 dampens the inflammasome activation and is associated with COVID-19 severity. Life Science Alliance, 2022, 5, e202101226.	1.3	7
3	Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovascular Research, 2022, 118, 3085-3096.	1.8	17
4	Ex vivo modelling of PD-1/PD-L1 immune checkpoint blockade under acute, chronic, and exhaustion-like conditions of T-cell stimulation. Scientific Reports, 2021, 11, 4030.	1.6	10
5	DNA and modified vaccinia Ankara prime–boost vaccination generates strong CD8 + T cell responses against minor histocompatibility antigen HAâ€1. British Journal of Haematology, 2021, 195, 433-446.	1.2	0
6	The immune landscape of SARS-CoV-2-associated Multisystem Inflammatory Syndrome in Children (MIS-C) from acute disease to recovery. IScience, 2021, 24, 103215.	1.9	35
7	Immediate Sample Fixation Increases Circulating Tumour Cell (CTC) Capture and Preserves Phenotype in Head and Neck Squamous Cell Carcinoma: Towards a Standardised Approach to Microfluidic CTC Biomarker Discovery. Cancers, 2021, 13, 5519.	1.7	6
8	Cytotoxic CD4+ T-cells specific for EBV capsid antigen BORF1 are maintained in long-term latently infected healthy donors. PLoS Pathogens, 2021, 17, e1010137.	2.1	7
9	Factors associated with cytomegalovirus serostatus in young people in England: a cross-sectional study. BMC Infectious Diseases, 2020, 20, 875.	1.3	7
10	Circulating Tumour Cell Expression of Immune Markers as Prognostic and Therapeutic Biomarkers in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 8229.	1.8	7
11	Predictors of Epstein-Barr virus serostatus and implications for vaccine policy: A systematic review of the literature. Journal of Global Health, 2020, 10, 010404.	1.2	27
12	BCL-W is dispensable for the sustained survival of select Burkitt lymphoma and diffuse large B-cell lymphoma cell lines. Blood Advances, 2020, 4, 356-366.	2.5	16
13	Risk factors for Epstein Barr virus-associated cancers: a systematic review, critical appraisal, and mapping of the epidemiological evidence. Journal of Global Health, 2020, 10, 010405.	1.2	56
14	Circulating Tumour Cell Biomarkers in Head and Neck Cancer: Current Progress and Future Prospects. Cancers, 2019, 11, 1115.	1.7	28
15	The T-cell Response to Epstein-Barr Virus–New Tricks From an Old Dog. Frontiers in Immunology, 2019, 10, 2193.	2.2	61
16	Regulation of S1PR2 by the EBV oncogene LMP1 in aggressive ABCâ€subtype diffuse large Bâ€cell lymphoma. Journal of Pathology, 2019, 248, 142-154.	2.1	8
17	Modelling the dynamics of EBV transmission to inform a vaccine target product profile and future vaccination strategy. Scientific Reports, 2019, 9, 9290.	1.6	11
18	Predictors of Epstein-Barr virus serostatus in young people in England. BMC Infectious Diseases, 2019, 19, 1007.	1.3	25

GRAHAM S TAYLOR

#	Article	IF	CITATIONS
19	Heterologous prime-boost vaccination protects against EBV antigen–expressing lymphomas. Journal of Clinical Investigation, 2019, 129, 2071-2087.	3.9	48
20	EBNA1-targeted probe for the imaging and growth inhibition of tumours associated with the Epstein–Barr virus. Nature Biomedical Engineering, 2017, 1, .	11.6	27
21	Interleukin-17-positive mast cells influence outcomes from BCG for patients with CIS: Data from a comprehensive characterisation of the immune microenvironment of urothelial bladder cancer. PLoS ONE, 2017, 12, e0184841.	1.1	18
22	Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination. PLoS Pathogens, 2016, 12, e1005549.	2.1	36
23	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
24	Therapeutic vaccination strategies to treat nasopharyngeal carcinoma. Chinese Clinical Oncology, 2016, 5, 23-23.	0.4	30
25	The Immunology of Epstein-Barr Virus–Induced Disease. Annual Review of Immunology, 2015, 33, 787-821.	9.5	416
26	T-Cell Responses to EBV. Current Topics in Microbiology and Immunology, 2015, 391, 325-353.	0.7	25
27	Downâ€regulation of <scp>LPA</scp> receptor 5 contributes to aberrant <scp>LPA</scp> signalling in <scp>EBV</scp> â€associated nasopharyngeal carcinoma. Journal of Pathology, 2015, 235, 456-465.	2.1	15
28	A Recombinant Modified Vaccinia Ankara Vaccine Encoding Epstein–Barr Virus (EBV) Target Antigens: A Phase I Trial in UK Patients with EBV-Positive Cancer. Clinical Cancer Research, 2014, 20, 5009-5022.	3.2	139
29	Robust T-cell stimulation by Epstein-Barr virus–transformed B cells after antigen targeting to DEC-205. Blood, 2013, 121, 1584-1594.	0.6	38
30	Phase I Trial of Recombinant Modified Vaccinia Ankara Encoding Epstein–Barr Viral Tumor Antigens in Nasopharyngeal Carcinoma Patients. Cancer Research, 2013, 73, 1676-1688.	0.4	159
31	Autophagy and immunity – insights from human herpesviruses. Frontiers in Immunology, 2012, 3, 170.	2.2	13
32	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
33	Infectious agents in human cancers: Lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Letters, 2011, 305, 263-278.	3.2	50
34	Immune defence against EBV and EBV-associated disease. Current Opinion in Immunology, 2011, 23, 258-264.	2.4	91
35	Autophagy in herpesvirus immune control and immune escape. Herpesviridae, 2011, 2, 2.	2.7	17
36	The role of tetraspanin CD63 in antigen presentation via MHC class II. European Journal of Immunology, 2011, 41, 2556-2561.	1.6	68

GRAHAM S TAYLOR

#	Article	IF	CITATIONS
37	Epstein-Barr Virus Evades CD4+ T Cell Responses in Lytic Cycle through BZLF1-mediated Downregulation of CD74 and the Cooperation of vBcl-2. PLoS Pathogens, 2011, 7, e1002455.	2.1	61
38	A novel latent membrane 2 transcript expressed in Epstein-Barr virus–positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood, 2010, 116, 3695-3704.	0.6	63
39	Nuclear location of an endogenously expressed antigen, EBNA1, restricts access to macroautophagy and the range of CD4 epitope display. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2165-2170.	3.3	101
40	Nuclear shelter: The influence of subcellular location on the processing of antigens by macroautophagy. Autophagy, 2010, 6, 560-561.	4.3	10
41	T Cell Detection of a B-Cell Tropic Virus Infection: Newly-Synthesised versus Mature Viral Proteins as Antigen Sources for CD4 and CD8 Epitope Display. PLoS Pathogens, 2009, 5, e1000699.	2.1	28
42	CD4+ T-cell clones recognizing human lymphoma-associated antigens: generation by in vitro stimulation with autologous Epstein-Barr virus–transformed B cells. Blood, 2009, 114, 807-815.	0.6	25
43	CD4 and CD8 T cell responses to tumour-associated Epstein–Barr virus antigens in nasopharyngeal carcinoma patients. Cancer Immunology, Immunotherapy, 2008, 57, 963-975.	2.0	38
44	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
45	EBV Latent Membrane Proteins (LMPs) 1 and 2 as Immunotherapeutic Targets: LMP-Specific CD4+Cytotoxic T Cell Recognition of EBV-Transformed B Cell Lines. Journal of Immunology, 2008, 180, 1643-1654.	0.4	58
46	Antigens and Autophagy: The Path Less Travelled?. Autophagy, 2007, 3, 60-62.	4.3	4
47	Cellular Responses to Viral Infection in Humans: Lessons from Epstein-Barr Virus. Annual Review of Immunology, 2007, 25, 587-617.	9.5	668
48	EBV-Specific CD4+ T Cell Clones Exhibit Vigorous Allogeneic Responses. Journal of Immunology, 2006, 177, 1427-1433.	0.4	31
49	A Role for Intercellular Antigen Transfer in the Recognition of EBV-Transformed B Cell Lines by EBV Nuclear Antigen-Specific CD4+T Cells. Journal of Immunology, 2006, 177, 3746-3756.	0.4	65
50	Regression of Epstein-Barr Virus-Induced B-Cell Transformation In Vitro Involves Virus-Specific CD8 + T Cells as the Principal Effectors and a Novel CD4 + T-Cell Reactivity. Journal of Virology, 2005, 79, 5477-5488.	1.5	33
51	Identification of Cytomegalovirus-Specific Cytotoxic T Lymphocytes In Vitro Is Greatly Enhanced by the Use of Recombinant Virus Lacking the US2 to US11 Region or Modified Vaccinia Virus Ankara Expressing Individual Viral Genes. Journal of Virology, 2005, 79, 2869-2879.	1.5	56
52	Characterization of Latent Membrane Protein 2 Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. Journal of Immunology, 2005, 175, 4137-4147.	0.4	72
53	CD8 T Cell Recognition of Endogenously Expressed Epstein-Barr Virus Nuclear Antigen 1. Journal of Experimental Medicine, 2004, 199, 1409-1420.	4.2	153
54	T cell-based therapies for EBV-associated malignancies. Expert Opinion on Biological Therapy, 2004, 4, 11-21.	1.4	9

#	Article	IF	CITATIONS
55	Identification of a TAP-Independent, Immunoproteasome-Dependent CD8 + T-Cell Epitope in Epstein-Barr Virus Latent Membrane Protein 2. Journal of Virology, 2003, 77, 2757-2761.	1.5	48
56	Processing of a Multiple Membrane Spanning Epstein-Barr Virus Protein for Cd8+T Cell Recognition Reveals a Proteasome-Dependent, Transporter Associated with Antigen Processing–Independent Pathway. Journal of Experimental Medicine, 2001, 194, 1053-1068.	4.2	68
57	Molecular Epidemiology of Outbreak of Respiratory Syncytial Virus within Bone Marrow Transplantation Unit. Journal of Clinical Microbiology, 2001, 39, 801-803.	1.8	38
58	The Innate and Adaptive Immune Landscape of SARS-CoV-2-Associated Multisystem Inflammatory Syndrome in Children (MIS-C) from Acute Disease to Recovery. SSRN Electronic Journal, 0, , .	0.4	0