Le-Ping Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4696765/publications.pdf

Version: 2024-02-01

22 papers 1,345 citations

687363 13 h-index 752698 20 g-index

24 all docs

24 docs citations

times ranked

24

2030 citing authors

#	Article	IF	Citations
1	METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cellular and Molecular Life Sciences, 2022, 79, 135.	5 . 4	47
2	In-situ formed elastin-based hydrogels enhance wound healing via promoting innate immune cells recruitment and angiogenesis. Materials Today Bio, 2022, 15, 100300.	5 . 5	19
3	High expression of vinculin predicts poor prognosis and distant metastasis and associates with influencing tumor-associated NK cell infiltration and epithelial-mesenchymal transition in gastric cancer. Aging, 2021, 13, 5197-5225.	3.1	18
4	Development and Characterization of High Efficacy Cell-Penetrating Peptide via Modulation of the Histidine and Arginine Ratio for Gene Therapy. Materials, 2021, 14, 4674.	2.9	14
5	PARP1 Inhibitor Combined With Oxaliplatin Efficiently Suppresses Oxaliplatin Resistance in Gastric Cancer-Derived Organoids via Homologous Recombination and the Base Excision Repair Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 719192.	3.7	5
6	An efficient and userâ€friendly method for cytohistological analysis of organoids. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 1012-1022.	2.7	3
7	Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model. Materials Today Bio, 2021, 12, 100172.	5.5	4
8	Collagen/GAG scaffolds activated by RALA-siMMP-9 complexes with potential for improved diabetic foot ulcer healing. Materials Science and Engineering C, 2020, 114, 111022.	7.3	20
9	Robust and nanostructured chitosan–silica hybrids for bone repair application. Journal of Materials Chemistry B, 2020, 8, 5042-5051.	5.8	10
10	CIAPIN1 is a potential target for apoptosis of multiple myeloma. Materials Express, 2019, 9, 1106-1111.	0.5	0
11	Tropoelastin Implants That Accelerate Wound Repair. Advanced Healthcare Materials, 2018, 7, e1701206.	7.6	29
12	Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3168-3177.	2.7	24
13	Biomimetic Approaches for the Engineering of Osteochondral Tissues. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 187-211.	1.0	0
14	Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports, 2016, 6, 31037.	3.3	62
15	Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomaterials Science and Engineering, 2015, 1, 183-200.	5 . 2	58
16	Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance. Acta Biomaterialia, 2015, 12, 227-241.	8.3	140
17	De novo bone formation on macro/microporous silk and silk/nano-sized calcium phosphate scaffolds. Journal of Bioactive and Compatible Polymers, 2013, 28, 439-452.	2.1	29
18	Silk-Fibroin/Methacrylated Gellan Gum Hydrogel As An Novel Scaffold For Application In Meniscus Cell-Based Tissue Engineering. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, e53-e55.	2.7	8

#	Article	IF	CITATIONS
19	Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine, 2013, 8, 359-378.	3.3	60
20	Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomaterialia, 2012, 8, 2483-2492.	8.3	210
21	Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomaterialia, 2012, 8, 289-301.	8.3	276
22	Genipinâ€crossâ€linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2010, 95A, 465-475.	4.0	291