List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4696655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SUMO E3 ligase SIZ1 connects sumoylation and reactive oxygen species homeostasis processes in Arabidopsis. Plant Physiology, 2022, 189, 934-954.	2.3	8
2	Geminivirus DNA replication in plants. , 2022, , 323-346.		2
3	Plant DNA polymerases \hat{I}_{\pm} and \hat{I} mediate replication of geminiviruses. Nature Communications, 2021, 12, 2780.	5.8	26
4	miR825-5p targets the TIR-NBS-LRR gene <i>MIST1</i> and down-regulates basal immunity against <i>Pseudomonas syringae</i> in Arabidopsis. Journal of Experimental Botany, 2021, 72, 7316-7334.	2.4	16
5	ER Bodies Are Induced by <i>Pseudomonas syringae</i> and Negatively Regulate Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 1001-1009.	1.4	6
6	The C4 protein from the geminivirus <i>Tomato yellow leaf curl virus</i> confers drought tolerance in Arabidopsis through an ABAâ€independent mechanism. Plant Biotechnology Journal, 2020, 18, 1121-1123.	4.1	35
7	Ménage à Trois: Unraveling the Mechanisms Regulating Plant–Microbe–Arthropod Interactions. Trends in Plant Science, 2020, 25, 1215-1226.	4.3	31
8	Cutting-edge technology to generate plant immunity against geminiviruses. Current Opinion in Virology, 2020, 42, 58-64.	2.6	5
9	Protocol: low cost fast and efficient generation of molecular tools for small RNA analysis. Plant Methods, 2020, 16, 41.	1.9	0
10	Characterization of Curtovirus V2 Protein, a Functional Homolog of Begomovirus V2. Frontiers in Plant Science, 2020, 11, 835.	1.7	15
11	De novo assembly and functional annotation of Citrus aurantifolia transcriptome from Candidatus Liberibacter asiaticus infected and non-infected trees. Data in Brief, 2020, 29, 105198.	0.5	3
12	Gene Expression Profile of Mexican Lime (Citrus aurantifolia) Trees in Response to Huanglongbing Disease caused by Candidatus Liberibacter asiaticus. Microorganisms, 2020, 8, 528.	1.6	21
13	High-Throughput Sequencing Reveals Differential Begomovirus Species Diversity in Non-Cultivated Plants in Northern-Pacific Mexico. Viruses, 2019, 11, 594.	1.5	46
14	A Lysine Residue Essential for Geminivirus Replication Also Controls Nuclear Localization of the Tomato Yellow Leaf Curl Virus Rep Protein. Journal of Virology, 2019, 93, .	1.5	21
15	Integrated single-base resolution maps of transcriptome, sRNAome and methylome of Tomato yellow leaf curl virus (TYLCV) in tomato. Scientific Reports, 2019, 9, 2863.	1.6	26
16	A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1388-1393.	3.3	203
17	Sugar signaling regulation by arabidopsis SIZ1-driven sumoylation is independent of salicylic acid. Plant Signaling and Behavior, 2018, 13, e1179417.	1.2	7
18	Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. Journal of Virology, 2018, 92, .	1.5	21

#	Article	IF	CITATIONS
19	Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development. Journal of Experimental Botany, 2018, 69, 4633-4649.	2.4	25
20	Revised nomenclature and functional overview of the ULP gene family of plant deSUMOylating proteases. Journal of Experimental Botany, 2018, 69, 4505-4509.	2.4	20
21	Transient Expression Assay in NahG Arabidopsis Plants Using Agrobacterium tumefaciens. Bio-protocol, 2018, 8, e2894.	0.2	3
22	Arabidopsis NahG Plants as a Suitable and Efficient System for Transient Expression using Agrobacterium tumefaciens. Molecular Plant, 2017, 10, 353-356.	3.9	26
23	V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. Journal of General Virology, 2017, 98, 2607-2614.	1.3	50
24	The C2 Protein from the Geminivirus Tomato Yellow Leaf Curl Sardinia Virus Decreases Sensitivity to Jasmonates and Suppresses Jasmonate-Mediated Defences. Plants, 2016, 5, 8.	1.6	35
25	Transcriptomic Analysis Using Olive Varieties and Breeding Progenies Identifies Candidate Genes Involved in Plant Architecture. Frontiers in Plant Science, 2016, 7, 240.	1.7	25
26	Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci. Scientific Reports, 2016, 6, 30942.	1.6	29
27	SUMO proteases ULP1c and ULP1d are required for development and osmotic stress responses in Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 143-159.	2.0	39
28	<i>ArabidopsisÂthaliana</i> , an experimental host for tomato yellow leaf curl diseaseâ€associated begomoviruses by agroinoculation and whitefly transmission. Plant Pathology, 2015, 64, 265-271.	1.2	16
29	Auto-acetylation on K289 is not essential for HopZ1a-mediated plant defense suppression. Frontiers in Microbiology, 2015, 6, 684.	1.5	17
30	SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2015, 56, 2297-2311.	1.5	44
31	Using the Yeast Two-Hybrid System to Identify Protein–Protein Interactions. Methods in Molecular Biology, 2014, 1072, 241-258.	0.4	21
32	A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses. Scientific Reports, 2014, 4, 6438.	1.6	30
33	Geminiviruses: masters at redirecting and reprogramming plant processes. Nature Reviews Microbiology, 2013, 11, 777-788.	13.6	601
34	Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing. Viruses, 2013, 5, 998-1022.	1.5	41
35	Geminivirus <scp>R</scp> ep protein interferes with the plant <scp>DNA</scp> methylation machinery and suppresses transcriptional gene silencing. New Phytologist, 2013, 199, 464-475.	3.5	166
36	Effects of the Crinivirus Coat Protein–Interacting Plant Protein SAHH on Post-Transcriptional RNA Silencing and Its Suppression. Molecular Plant-Microbe Interactions, 2013, 26, 1004-1015.	1.4	43

#	Article	IF	CITATIONS
37	Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response Â. Plant Physiology, 2013, 162, 2015-2027.	2.3	39
38	C2 from Beet curly top virus meddles with the cell cycle. Plant Signaling and Behavior, 2012, 7, 1705-1708.	1.2	7
39	Semirna: Searching for Plant miRNAs Using Target Sequences. OMICS A Journal of Integrative Biology, 2012, 16, 168-177.	1.0	17
40	Geminivirus C2 protein represses genes involved in sulphur assimilation and this effect can be counteracted by jasmonate treatment. European Journal of Plant Pathology, 2012, 134, 49-59.	0.8	5
41	C2 from <i>Beet curly top virus</i> promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. New Phytologist, 2012, 194, 846-858.	3.5	40
42	SUMO, a heavyweight player in plant abiotic stress responses. Cellular and Molecular Life Sciences, 2012, 69, 3269-3283.	2.4	118
43	Functional Analysis of Gene-Silencing Suppressors from Tomato Yellow Leaf Curl Disease Viruses. Molecular Plant-Microbe Interactions, 2012, 25, 1294-1306.	1.4	98
44	Mpg2 interacts and cooperates with Mpg1 to maintain yeast glycosylation. FEMS Yeast Research, 2012, 12, 511-520.	1.1	2
45	Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 23, 1014-1032.	3.1	195
46	Geminivirus C2 protein might be the key player for geminiviral co-option of SCF-mediated ubiquitination. Plant Signaling and Behavior, 2011, 6, 999-1001.	1.2	27
47	Interaction between Geminivirus Replication Protein and the SUMO-Conjugating Enzyme Is Required for Viral Infection. Journal of Virology, 2011, 85, 9789-9800.	1.5	68
48	Identification of Host Genes Involved in Geminivirus Infection Using a Reverse Genetics Approach. PLoS ONE, 2011, 6, e22383.	1.1	62
49	Tomato yellow leaf curl viruses: <i>ménage à trois</i> between the virus complex, the plant and the whitefly vector. Molecular Plant Pathology, 2010, 11, 441-450.	2.0	146
50	Begomovirus coat protein interacts with a small heatâ€shock protein of its transmission vector (<i>Bemisia tabaci</i>). Insect Molecular Biology, 2009, 18, 693-703.	1.0	56
51	A Versatile Transreplication-Based System To Identify Cellular Proteins Involved in Geminivirus Replication. Journal of Virology, 2006, 80, 3624-3633.	1.5	46
52	Mpg1, a fission yeast protein required for proper septum structure, is involved in cell cycle progression through cell-size checkpoint. Molecular Genetics and Genomics, 2005, 274, 155-67.	1.0	12
53	Pepper (Capsicum annuum) Is a Dead-End Host for Tomato yellow leaf curl virus. Phytopathology, 2005, 95, 1089-1097.	1.1	96
54	Interaction between a Geminivirus Replication Protein and the Plant Sumoylation System. Journal of Virology, 2004, 78, 2758-2769.	1.5	109

#	Article	IF	CITATIONS
55	TeÌ,te aÌ€ TeÌ,te of Tomato Yellow Leaf Curl Virus and Tomato Yellow Leaf Curl Sardinia Virus in Single Nuclei. Journal of Virology, 2004, 78, 10715-10723.	1.5	104
56	Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology, 2003, 312, 381-394.	1.1	133
57	Tomato Yellow Leaf Curl Sardinia Virus Rep-Derived Resistance to Homologous and Heterologous Geminiviruses Occurs by Different Mechanisms and Is Overcome if Virus-Mediated Transgene Silencing Is Activated. Journal of Virology, 2003, 77, 6785-6798.	1.5	97
58	High Genetic Stability of the Begomovirus Tomato yellow leaf curl Sardinia virus in Southern Spain Over an 8-Year Period. Phytopathology, 2002, 92, 842-849.	1.1	68
59	The Identification of Wos2, a p23 Homologue That Interacts With Wee1 and Cdc2 in the Mitotic Control of Fission Yeasts. Genetics, 1999, 153, 1561-1572.	1.2	41
60	Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggest a unique integration event. Plant Molecular Biology, 1997, 35, 313-321.	2.0	57
61	New Mutants of Phycomyces blakesleeanus for (beta)-Carotene Production. Applied and Environmental Microbiology, 1997, 63, 3657-3661.	1.4	41
62	Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 759-764.	3.3	169
63	Functional analysis of theDrosophila CDC2 Dm gene in fission yeast. Molecular Genetics and Genomics, 1995, 248, 621-628.	2.4	2
64	Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Molecular Biology, 1994, 24, 241-248.	2.0	47
65	[25] Photoinduction of carotenoid biosynthesis. Methods in Enzymology, 1993, 214, 283-294.	0.4	21
66	Antisense genes as tools to engineer virus resistance in plants. Biochemical Society Transactions, 1992, 20, 757-761.	1.6	4
67	Mutants shed light on plant development. Trends in Genetics, 1992, 8, 1-2.	2.9	12
68	Independence of the carotene and sterol pathways ofPhycomyces. FEBS Letters, 1992, 306, 209-212.	1.3	32
69	Prospects for engineering virus resistance in plants with antisense RNA. Trends in Biotechnology, 1992, 10, 383-388.	4.9	19
70	In vivo channeling of substrates in an enzyme aggregate for beta-carotene biosynthesis Proceedings of the United States of America, 1991, 88, 4936-4940.	3.3	44
71	Correlation between in vivo and in vitro carotenogenesis in Phycomyces. Phytochemistry, 1991, 30, 2587-2591.	1.4	18
72	Photoinduced accumulation of carotene in Phycomyces. Planta, 1991, 183, 1-9.	1.6	42

#	Article	IF	CITATIONS
73	Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6721-6725.	3.3	153
74	Inhibition of phytoene dehydrogenation and activation of carotenogenesis in Phycomyces. Phytochemistry, 1989, 28, 1623-1626.	1.4	22
75	Carotene-superproducing mutants ofPhycomyces blakesleeanus. Experimental Mycology, 1989, 13, 332-336.	1.8	30
76	End-product regulation of carotenogenesis in Phycomyces. Archives of Microbiology, 1988, 150, 209-214.	1.0	46
77	ζ-Carotene and other carotenes in a Phycomyces mutant. Phytochemistry, 1987, 26, 2251-2254.	1.4	24