Trevor D Lawley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4696350/publications.pdf

Version: 2024-02-01

59 papers 10,701 citations

76326 40 h-index 58 g-index

70 all docs

70 docs citations

times ranked

70

12729 citing authors

#	Article	IF	Citations
1	Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut, 2022, 71, 1821-1830.	12.1	63
2	The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping. Cell Host and Microbe, 2022, 30, 124-138.e8.	11.0	59
3	Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nature Communications, 2022, 13, 1445.	12.8	52
4	Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis. Nature Microbiology, 2022, 7, 590-599.	13.3	53
5	Should we modulate the neonatal microbiome and what should be the goal?. Microbiome, 2022, 10, 74.	11.1	6
6	Mother–infant transmission of human microbiota. Current Opinion in Microbiology, 2022, 69, 102173.	5.1	23
7	Massive expansion of human gut bacteriophage diversity. Cell, 2021, 184, 1098-1109.e9.	28.9	331
8	Pangenome analysis reveals genetic isolation in Campylobacter hyointestinalis subspecies adapted to different mammalian hosts. Scientific Reports, 2021, 11, 3431.	3.3	7
9	Identification of bacteria-derived HLA-bound peptides in melanoma. Nature, 2021, 592, 138-143.	27.8	187
10	Automated analysis of genomic sequences facilitates high-throughput and comprehensive description of bacteria. ISME Communications, 2021, 1 , .	4.2	228
11	A novel technique capable of taking â€~protected' biopsies for reliable assessment of the distribution of microbiota along the colonic mucosa. Journal of Microbiological Methods, 2021, 185, 106204.	1.6	1
12	Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biology, 2021, 22, 204.	8.8	25
13	Citrobacter amalonaticus Inhibits the Growth of Citrobacter rodentium in the Gut Lumen. MBio, 2021, 12, e0241021.	4.1	9
14	Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature, 2020, 587, 472-476.	27.8	167
15	Distinct microbial and immune niches of the human colon. Nature Immunology, 2020, 21, 343-353.	14.5	175
16	Adaptation of host transmission cycle during Clostridium difficile speciation. Nature Genetics, 2019, 51, 1315-1320.	21.4	41
17	High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biology, 2019, 17, e3000231.	5. 6	72
18	A new genomic blueprint of the human gut microbiota. Nature, 2019, 568, 499-504.	27.8	901

#	Article	IF	CITATIONS
19	Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature, 2019, 574, 117-121.	27.8	617
20	A human gut bacterial genome and culture collection for improved metagenomic analyses. Nature Biotechnology, 2019, 37, 186-192.	17.5	420
21	Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nature Communications, 2018, 9, 1557.	12.8	241
22	Commensal Koch's postulates: establishing causation in human microbiota research. Current Opinion in Microbiology, 2018, 42, 47-52.	5.1	84
23	Interleukin-22 promotes phagolysosomal fusion to induce protection against <i>Salmonella enterica</i> Typhimurium in human epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10118-10123.	7.1	33
24	Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Scientific Reports, 2018, 8, 8181.	3.3	10
25	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017, 15, 531-543.	28.6	150
26	Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota. Nature Communications, 2017, 8, 1367.	12.8	56
27	Culturing of â€~unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature, 2016, 533, 543-546.	27.8	958
28	HPMCD: the database of human microbial communities from metagenomic datasets and microbial reference genomes. Nucleic Acids Research, 2016, 44, D604-D609.	14.5	60
29	A Modified R-Type Bacteriocin Specifically Targeting Clostridium difficile Prevents Colonization of Mice without Affecting Gut Microbiota Diversity. MBio, 2015, 6, .	4.1	115
30	Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genomics, 2015 , 16 , 392 .	2.8	39
31	Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections. MBio, 2015, 6, e00551.	4.1	228
32	Systematic discovery of probiotics. Nature Biotechnology, 2015, 33, 47-48.	17.5	16
33	High-Throughput Analysis of Gene Essentiality and Sporulation in Clostridium difficile. MBio, 2015, 6, e02383.	4.1	157
34	Complete genome sequence of BS49 and draft genome sequence of BS34A, Bacillus subtilis strains carrying Tn916. FEMS Microbiology Letters, 2015, 362, 1-4.	1.8	13
35	Pathogen Resistance Mediated by IL-22 Signaling at the Epithelial–Microbiota Interface. Journal of Molecular Biology, 2015, 427, 3676-3682.	4.2	52
36	Pathogens' Exploitation of the Intestinal Food Web. Cell Host and Microbe, 2014, 16, 703-705.	11.0	7

#	Article	IF	CITATIONS
37	Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen. Cell Host and Microbe, 2014, 16, 504-516.	11.0	237
38	Functional genomics reveals that Clostridium difficileSpoOA coordinates sporulation, virulence and metabolism. BMC Genomics, 2014, 15, 160.	2.8	145
39	Emerging insights on intestinal dysbiosis during bacterial infections. Current Opinion in Microbiology, 2014, 17, 67-74.	5.1	94
40	Proteomic Comparison of Historic and Recently Emerged Hypervirulent <i>Clostridium difficile</i> Strains. Journal of Proteome Research, 2013, 12, 1151-1161.	3.7	52
41	Infection and immunity from a lifecourse perspective: Life Study Enhancement. Lancet, The, 2013, 382, S35.	13.7	2
42	Murine models to study Clostridium difficile infection and transmission. Anaerobe, 2013, 24, 94-97.	2.1	29
43	Bacteriotherapy for the treatment of intestinal dysbiosis caused by Clostridium difficile infection. Current Opinion in Microbiology, 2013, 16, 596-601.	5.1	41
44	Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature Genetics, 2013, 45, 109-113.	21.4	669
45	Intestinal colonization resistance. Immunology, 2013, 138, 1-11.	4.4	466
46	The <i>agr</i> Locus Regulates Virulence and Colonization Genes in Clostridium difficile 027. Journal of Bacteriology, 2013, 195, 3672-3681.	2.2	99
47	Global Analysis of the Sporulation Pathway of Clostridium difficile. PLoS Genetics, 2013, 9, e1003660.	3. 5	219
48	SpoIVA and SipL Are Clostridium difficile Spore Morphogenetic Proteins. Journal of Bacteriology, 2013, 195, 1214-1225.	2.2	129
49	Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice. PLoS Pathogens, 2012, 8, e1002995.	4.7	504
50	The $\langle i \rangle$ Clostridium difficile spo0A $\langle i \rangle$ Gene Is a Persistence and Transmission Factor. Infection and Immunity, 2012, 80, 2704-2711.	2.2	324
51	Evolutionary dynamics of <i>Clostridium difficile</i> over short and long time scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7527-7532.	7.1	346
52	Use of Purified <i>Clostridium difficile</i> Spores To Facilitate Evaluation of Health Care Disinfection Regimens. Applied and Environmental Microbiology, 2010, 76, 6895-6900.	3.1	120
53	Proteomic and Genomic Characterization of Highly Infectious <i>Clostridium difficile</i> 630 Spores. Journal of Bacteriology, 2009, 191, 5377-5386.	2.2	210
54	Antibiotic Treatment of <i>Clostridium difficile</i> Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts. Infection and Immunity, 2009, 77, 3661-3669.	2.2	315

#	Article	IF	CITATIONS
55	Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biology, 2009, 10, R102.	9.6	431
56	Host Transmission of <i>Salmonella enterica</i> Serovar Typhimurium Is Controlled by Virulence Factors and Indigenous Intestinal Microbiota. Infection and Immunity, 2008, 76, 403-416.	2.2	263
57	Interaction between the co-inherited TraG coupling protein and the TraJ membrane-associated protein of the H-plasmid conjugative DNA transfer system resembles chromosomal DNA translocases. Microbiology (United Kingdom), 2007, 153, 428-441.	1.8	14
58	Genome-Wide Screen for Salmonella Genes Required for Long-Term Systemic Infection of the Mouse. PLoS Pathogens, 2006, 2, e11.	4.7	300
59	The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia. Gates Open Research, 0, 6, 77.	1.1	1