Xiaoli Luan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4696148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A resource-aware sliding mode control approach for Markov jump systems. ISA Transactions, 2022, 124, 318-325.	3.1	8
2	Fuzzy Fault Detection for Markov Jump Systems With Partly Accessible Hidden Information: An Event-Triggered Approach. IEEE Transactions on Cybernetics, 2022, 52, 7352-7361.	6.2	121
3	Asynchronous Fault Detection for Interval Type-2 Fuzzy Nonhomogeneous Higher Level Markov Jump Systems With Uncertain Transition Probabilities. IEEE Transactions on Fuzzy Systems, 2022, 30, 2487-2499.	6.5	121
4	Finite-frequency self-triggered model predictive control for Markov jump systems subject to actuator saturation. Transactions of the Institute of Measurement and Control, 2022, 44, 2406-2417.	1.1	1
5	Improved state estimator for linear-Gaussian systems subject to initialization errors. Chemometrics and Intelligent Laboratory Systems, 2022, , 104608.	1.8	0
6	Finite-time control of discrete-time semi-Markov jump linear systems: A self-triggered MPC approach. Journal of the Franklin Institute, 2022, 359, 6939-6957.	1.9	64
7	Asynchronous Output Feedback Control for a Class of Conic-Type Nonlinear Hidden Markov Jump Systems Within a Finite-Time Interval. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7644-7651.	5.9	81
8	Output Regulation of Linearized Column Froth Flotation Process. IEEE Transactions on Control Systems Technology, 2021, 29, 249-262.	3.2	6
9	Dynamic Self-Triggered Controller Codesign for Markov Jump Systems. IEEE Transactions on Automatic Control, 2021, 66, 1353-1360.	3.6	49
10	Finite-Time L ₂ -Gain Asynchronous Control for Continuous-Time Positive Hidden Markov Jump Systems via T–S Fuzzy Model Approach. IEEE Transactions on Cybernetics, 2021, 51, 77-87.	6.2	133
11	Sliding Mode Controller Design for Conic-Type Nonlinear Semi-Markovian Jumping Systems of Time-Delayed Chua's Circuit. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2467-2475.	5.9	56
12	Adaptive optimization algorithm for nonlinear Markov jump systems with partial unknown dynamics. International Journal of Robust and Nonlinear Control, 2021, 31, 2126-2140.	2.1	85
13	Finite-time higher-order moment state estimation for Markov jump linear system with time-correlated measurement noise. Transactions of the Institute of Measurement and Control, 2021, 43, 2103-2110.	1.1	0
14	optimal control for semiâ€Markov jump linear systems via TPâ€free temporal difference () learning. International Journal of Robust and Nonlinear Control, 2021, 31, 6905-6916.	2.1	4
15	Finite-region asynchronous <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e743" altimg="si513.svg"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mi>â^ž<td>nmi:mi><!--</td--><td>/mml:mrow><</td></td></mml:mi></mml:msub></mml:math>	nmi:mi> </td <td>/mml:mrow><</td>	/mml:mrow><
16	Online state and inputs identification for stochastic systems using recursive expectation-maximization algorithm. Chemometrics and Intelligent Laboratory Systems, 2021, 217, 104403.	1.8	1
17	Self-triggered finite-time <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si28.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><m control for Markov jump systems with multiple frequency ranges performance. Information Sciences, 2021. 581. 694-710.</m </mml:mrow></mml:msub></mml:mrow></mml:math>	ml:mi>â^ž 4.0	
18	Reinforcement learning and adaptive optimization of a class of Markov jump systems with completely unknown dynamic information. Neural Computing and Applications, 2020, 32, 14311-14320.	3.2	47

Xiaoli Luan

#	Article	IF	CITATIONS
19	Observer-Based Asynchronous Fault Detection for Conic-Type Nonlinear Jumping Systems and its Application to Separately Excited DC Motor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 951-962.	3.5	92
20	Multilevel LASSO-based NIR temperature-correction modeling for viscosity measurement of bisphenol-A. ISA Transactions, 2020, 107, 206-213.	3.1	7
21	Robust control for Markov jump linear systems with unknown transition probabilities – an online temporal differences approach. Transactions of the Institute of Measurement and Control, 2020, 42, 3043-3051.	1.1	3
22	Finiteâ€time asynchronous resilient observer design of a class of nonâ€linear switched systems with timeâ€delays and uncertainties. IET Control Theory and Applications, 2020, 14, 952-963.	1.2	10
23	Fuzzy fault detection of conic-type nonlinear systems within the finite frequency domain. Applied Mathematics and Computation, 2020, 378, 125181.	1.4	2
24	Finite-time resources-aware self-triggered Hâ^ž controller for Markov jump systems. Journal of the Franklin Institute, 2020, 357, 11773-11792.	1.9	3
25	Highâ€order moment multiâ€sensor fusion filter design of Markov jump linear systems. IET Signal Processing, 2020, 14, 666-671.	0.9	2
26	A self-triggered control scheme for Markov jump systems under multiple range performance restrictions. IFAC-PapersOnLine, 2020, 53, 2783-2788.	0.5	0
27	Feature-based Data Alignment of Multi-stage Batch Processes and Its Application to Optimization. IFAC-PapersOnLine, 2019, 52, 778-783.	0.5	0
28	High-order moment stabilization for Markov jump systems with attenuation rate. Journal of the Franklin Institute, 2019, 356, 9677-9688.	1.9	3
29	Derandomisation-based multiple frequency control for stochastic Markov jump systems. International Journal of Systems Science, 2019, 50, 91-103.	3.7	1
30	High-Order Moment Filtering for Markov Jump Systems in Finite Frequency Domain. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1217-1221.	2.2	15
31	Higher order moment stability region for Markov jump systems based on cumulant generating function. Automatica, 2018, 93, 389-396.	3.0	27
32	Given-time multiple frequency control for Markov jump systems based on derandomization. Information Sciences, 2018, 451-452, 134-142.	4.0	12
33	Given-time consensus for stochastic Markov jump networks by dynamic output feedback. Transactions of the Institute of Measurement and Control, 2018, 40, 3160-3168.	1.1	3
34	Finiteâ€frequency fault detection based on derandomisation for Markov jump linear system. IET Control Theory and Applications, 2018, 12, 1148-1155.	1.2	16
35	High-Order Moment Recursive State Estimation of Markov Jump Linear Systems. IEEE Access, 2018, 6, 70788-70793.	2.6	3
36	Adaptive JIT-Lasso modeling for online application of near infrared spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2018, 183, 90-95.	1.8	13

XIAOLI LUAN

#	Article	IF	CITATIONS
37	Optimizing manipulated trajectory based on principal time-segmented variables for batch processes. Chemometrics and Intelligent Laboratory Systems, 2018, 181, 45-51.	1.8	1
38	Model Predictive Control of Mineral Column Flotation Process. Mathematics, 2018, 6, 100.	1.1	5
39	Fault Detection Based on Near-Infrared Spectra for the Oil Desalting Process. Applied Spectroscopy, 2018, 72, 1199-1204.	1.2	4
40	Compensator design based on inverted decoupling for nonâ€square processes. IET Control Theory and Applications, 2017, 11, 996-1005.	1.2	7
41	Near-infrared modelling with temperature compensation based on multilevel principal component regression. Vibrational Spectroscopy, 2017, 92, 302-307.	1.2	10
42	Stochastic consensus control with finite frequency specification for Markov jump networks. International Journal of Robust and Nonlinear Control, 2016, 26, 2961-2974.	2.1	12
43	Stochastic finiteâ€time consensualisation for Markov jump networks with disturbance. IET Control Theory and Applications, 2015, 9, 2340-2347.	1.2	9
44	Finite-Time Stabilization of Switching Markov Jump Systems with Uncertain Transition Rates. Circuits, Systems, and Signal Processing, 2015, 34, 3741-3756.	1.2	34
45	Finiteâ€time <i>H</i> _{â^ž} control with average dwellâ€time constraint for timeâ€delay Markov jump systems governed by deterministic switches. IET Control Theory and Applications, 2014, 8, 968-977.	1.2	15
46	Observer Based Finite-Time Stabilization for Discrete-Time Markov Jump Systems with Gaussian Transition Probabilities. Circuits, Systems, and Signal Processing, 2014, 33, 3019-3035.	1.2	7
47	Centralized PI control for high dimensional multivariable systems based on equivalent transfer function. ISA Transactions, 2014, 53, 1554-1561.	3.1	28
48	Finite-time stabilization for Markov jump systems governed by deterministic switches. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11123-11128.	0.4	0
49	H _{â^ž} Control for Discrete-Time Markov Jump Systems With Uncertain Transition Probabilities. IEEE Transactions on Automatic Control, 2013, 58, 1566-1572.	3.6	104
50	Finiteâ€ŧime stabilisation for Markov jump systems with Gaussian transition probabilities. IET Control Theory and Applications, 2013, 7, 298-304.	1.2	38
51	Observerâ€based finiteâ€time stabilization for extended Markov jump systems. Asian Journal of Control, 2011, 13, 925-935.	1.9	14
52	Robust finite-time control for a class of extended stochastic switching systems. International Journal of Systems Science, 2011, 42, 1197-1205.	3.7	19
53	Robust Finite-Time H â^ž Control for Nonlinear Jump Systems via Neural Networks. Circuits, Systems, and Signal Processing, 2010, 29, 481-498.	1.2	36
54	Self-Triggered Model Predictive Control of Discrete-Time Markov Jump Linear Systems. International Journal of Control, 0, , 1-0.	1.2	1