Esen E Alp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695511/publications.pdf

Version: 2024-02-01

		47006	58581
171	7,862	47	82
papers	citations	h-index	g-index
176	176	176	7436
170	170	170	7430
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sound velocity and compressibility of melts along the hedenbergite (CaFeSi2O6)-diopside (CaMgSi2O6) join at high pressure: Implications for stability and seismic signature of Fe-rich melts in the mantle. Earth and Planetary Science Letters, 2022, 577, 117250.	4.4	7
2	Structural, redox and isotopic behaviors of iron in geological silicate glasses: A NRIXS study of Lamb-MA¶ssbauer factors and force constants. Geochimica Et Cosmochimica Acta, 2022, 321, 184-205.	3.9	11
3	Loss and Isotopic Fractionation of Alkali Elements during Diffusion-Limited Evaporation from Molten Silicate: Theory and Experiments. ACS Earth and Space Chemistry, 2021, 5, 755-784.	2.7	14
4	Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
5	Iron, magnesium, and titanium isotopic fractionations between garnet, ilmenite, fayalite, biotite, and tourmaline: Results from NRIXS, ab initio, and study of mineral separates from the Moosilauke metapelite. Geochimica Et Cosmochimica Acta, 2021, 302, 18-45.	3.9	34
6	The Water-Fe-Pressure dependent single-crystal elastic properties of wadsleyite: Implications for the seismic anisotropy in the upper Mantle Transition Zone. Earth and Planetary Science Letters, 2021, 565, 116955.	4.4	10
7	Signature of Many-Body Localization of Phonons in Strongly Disordered Superlattices. Nano Letters, 2021, 21, 7419-7425.	9.1	1
8	Correction to Loss and Isotopic Fractionation of Alkali Elements during Diffusion-Limited Evaporation from Molten Silicate: Theory and Experiments. ACS Earth and Space Chemistry, 2021, 5, 2544-2544.	2.7	0
9	Elastic and magnetic properties of Fe3P up to core pressures: Phosphorus in the Earth's core. Earth and Planetary Science Letters, 2020, 531, 115974.	4.4	14
10	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	34.4	390
11	Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes. Inorganic Chemistry, 2020, 59, 14967-14982.	4.0	10
12	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
13	Orbital energy mismatch engenders high-spin ground states in heterobimetallic complexes. Chemical Science, 2020, 11, 9971-9977.	7.4	4
14	Effects of Noncovalent Interactions on High-Spin Fe(IV)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817.	13.7	53
15	Synthesis, Elasticity, and Spin State of an Intermediate MgSiO 3 â€FeAlO 3 Bridgmanite: Implications for Iron in Earth's Lower Mantle. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019964.	3.4	6
16	Exploring the Vibrational Side of Spinâ€Phonon Coupling in Singleâ€Molecule Magnets via ⟨sup⟩161⟨/sup⟩Dy Nuclear Resonance Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 8818-8822.	13.8	12
17	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>LaFe</mml:mi> <mml:msub><mml:mrow> /><mml:mrow><mml:mi>11.4</mml:mi></mml:mrow></mml:mrow></mml:msub> <mml:mi>Si</mml:mi> <mml:msub><mml:mi /><mml:mrow><mml:mi>H</mml:mi><mml:msub><mml:mrow></mml:mrow></mml:msub><mml:mi< td=""><td>row 3.2</td><td>15</td></mml:mi<></mml:mrow></mml:mi </mml:msub>	row 3.2	15
18	Is compliming the complimation of the complimation of the complimation of the complimation of the complete comp	2.4	4

#	Article	IF	Citations
19	Multimodal Investigation of Chiton Stylus Reveals New Biomineral. Microscopy and Microanalysis, 2020, 26, 100-102.	0.4	o
20	Stable Ferrous Mononitroxyl {FeNO}8 Complex with a Hindered Hydrotris(pyrazolyl)borate Coligand: Structure, Spectroscopic Characterization, and Reactivity Toward NO and O2. Inorganic Chemistry, 2019, 58, 4059-4062.	4.0	19
21	Electronic Structures of an [Fe(NNR2)]+/0/â€" Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation. Inorganic Chemistry, 2019, 58, 3535-3549.	4.0	19
22	Iron isotopic fractionation in mineral phases from Earth's lower mantle: Did terrestrial magma ocean crystallization fractionate iron isotopes?. Earth and Planetary Science Letters, 2019, 506, 113-122.	4.4	17
23	Synthetic Model Complex of the Key Intermediate in Cytochrome P450 Nitric Oxide Reductase. Inorganic Chemistry, 2019, 58, 1398-1413.	4.0	11
24	The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Journal of the American Chemical Society, 2018, 140, 2562-2574.	13.7	57
25	Highâ€Pressure Geophysical Properties of <i>Fcc</i> Phase FeH _X . Geochemistry, Geophysics, Geosystems, 2018, 19, 305-314.	2.5	37
26	Aqueous Superparamagnetic Magnetite Dispersions with Ultrahigh Initial Magnetic Susceptibilities. Langmuir, 2018, 34, 622-629.	3 . 5	6
27	Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4565-4570.	7.1	66
28	Momentâ€Volume Coupling in La(Fe _{1<i>â^'x</i>} Si _{<i>x</i>}) ₁₃ . Physica Status Solidi (B): Basic Research, 2018, 255, 1700465.	1.5	14
29	Valence and spin states of iron are invisible in Earth's lower mantle. Nature Communications, 2018, 9, 1284.	12.8	35
30	Nuclear Resonance Vibrational Spectroscopy Definition of O ₂ Intermediates in an Extradiol Dioxygenase: Correlation to Crystallography and Reactivity. Journal of the American Chemical Society, 2018, 140, 16495-16513.	13.7	14
31	Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12124-12129.	7.1	17
32	Experimental constraints on the sound velocities of cementite Fe3C to core pressures. Earth and Planetary Science Letters, 2018, 494, 164-171.	4.4	29
33	Impact of Pressure on Magnetic Order in Jarosite. Journal of the American Chemical Society, 2018, 140, 12001-12009.	13.7	9
34	Experimentally determined effects of olivine crystallization and melt titanium content on iron isotopic fractionation in planetary basalts. Geochimica Et Cosmochimica Acta, 2018, 238, 580-598.	3.9	22
35	Determining the vibrational entropy change in the giant magnetocaloric material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">LaFe</mml:mi></mml:mrow><mml:mrow><mml:mn>11.6</mml:mn></mml:mrow>1.41.4</mml:msub></mml:math>	nl:msยb> < sub> <td>:mrn4:msub> nl:math></td>	:mr n4: msub> nl:math>
36	By nuclear resonant inelastic x-ray scattering. Physical Review 6, 2006, 76. How Does a Heme Carbene Differ from Diatomic Ligated (NO, CO, and CN ^{â€"}) Analogues in the Axial Bond?. Inorganic Chemistry, 2018, 57, 8788-8795.	4.0	6

#	Article	IF	CITATIONS
37	Terminal Hydride Species in [FeFe]â€Hydrogenases Are Vibrationally Coupled to the Active Site Environment. Angewandte Chemie, 2018, 130, 10765-10769.	2.0	4
38	Influence of interfaces on the phonon density of states of nanoscale metallic multilayers: Phonon confinement and localization. Physical Review B, 2018, 98, .	3.2	11
39	Non-heme High-Spin {FeNO} ^{6–8} Complexes: One Ligand Platform Can Do It All. Journal of the American Chemical Society, 2018, 140, 11341-11359.	13.7	34
40	Terminal Hydride Species in [FeFe]â€Hydrogenases Are Vibrationally Coupled to the Active Site Environment. Angewandte Chemie - International Edition, 2018, 57, 10605-10609.	13.8	29
41	<i>SciPhon</i> : a data analysis software for nuclear resonant inelastic X-ray scattering with applications to Fe, Kr, Sn, Eu and Dy. Journal of Synchrotron Radiation, 2018, 25, 1581-1599.	2.4	29
42	Ferric Heme-Nitrosyl Complexes: Kinetically Robust or Unstable Intermediates?. Inorganic Chemistry, 2017, 56, 10513-10528.	4.0	40
43	<i>Operando</i> Phonon Studies of the Protonation Mechanism in Highly Active Hydrogen Evolution Reaction Pentlandite Catalysts. Journal of the American Chemical Society, 2017, 139, 14360-14363.	13.7	53
44	Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 963-971.	39.5	140
45	A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2017, 121, 16283-16290.	3.1	75
46	Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6468-6473.	7.1	51
47	A compact membrane-driven diamond anvil cell and cryostat system for nuclear resonant scattering at high pressure and low temperature. Review of Scientific Instruments, 2017, 88, 125109.	1.3	16
48	3D Motions of Iron in Sixâ€Coordinate {FeNO} ⁷ Hemes by Nuclear Resonance Vibration Spectroscopy. Chemistry - A European Journal, 2016, 22, 6323-6332.	3.3	4
49	Unusual Synthetic Pathway for an {Fe(NO) ₂ } ⁹ Dinitrosyl Iron Complex (DNIC) and Insight into DNIC Electronic Structure via Nuclear Resonance Vibrational Spectroscopy. Inorganic Chemistry, 2016, 55, 5485-5501.	4.0	55
50	High-pressure synchrotron Mössbauer and X-ray diffraction studies: Exploring the structure-related valence fluctuation in EuNi2P2. Physica B: Condensed Matter, 2016, 501, 101-105.	2.7	4
51	Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures. Earth and Planetary Science Letters, 2016, 447, 72-83.	4.4	55
52	Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI4. Journal of Chemical Physics, 2015, 143, 164508.	3.0	13
53	The São Paulo School of Advanced Sciences (ESPCA) on Recent Developments in Synchrotron Radiation. Synchrotron Radiation News, 2015, 28, 37-38.	0.8	0
54	Nuclear resonant inelastic X-ray scattering at high pressure and low temperature. Journal of Synchrotron Radiation, 2015, 22, 760-765.	2.4	14

#	Article	IF	Citations
55	Element-Resolved Thermodynamics of Magnetocaloric <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaFe</mml:mi><mml:mrow><mml:mn>13</mml:mn><mml:mo>â^'<td>nl:mö><m< td=""><td>ml:⁷⁸>x</td></m<></td></mml:mo></mml:mrow></mml:msub></mml:math>	nl:mö> <m< td=""><td>ml:⁷⁸>x</td></m<>	ml: ⁷⁸ >x
56	Recent Advances in Biosynthetic Modeling of Nitric Oxide Reductases and Insights Gained from Nuclear Resonance Vibrational and Other Spectroscopic Studies. Inorganic Chemistry, 2015, 54, 9317-9329.	4.0	21
57	Spinel–olivine–pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites. Geochimica Et Cosmochimica Acta, 2015, 169, 184-199.	3.9	63
58	New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe ³⁺ /Fe ⁴⁺ Redox in α-NaFeO ₂ . Chemistry of Materials, 2015, 27, 6755-6764.	6.7	162
59	Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe ⁴⁺ by Mössbauer Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15090-15093.	13.7	684
60	Synthesis and electrochemical properties of novel LiFeTiO4 and Li2FeTiO4 polymorphs with the CaFe2O4-type structures. Journal of Power Sources, 2015, 273, 396-403.	7.8	10
61	Comprehensive Fe–Ligand Vibration Identification in {FeNO} ⁶ Hemes. Journal of the American Chemical Society, 2014, 136, 18100-18110.	13.7	26
62	Hidden carbon in Earth's inner core revealed by shear softening in dense Fe ₇ C ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17755-17758.	7.1	96
63	Multistep synthesis of the SrFeO2F perovskite oxyfluoride via the SrFeO2 infinite-layer intermediate. Journal of Fluorine Chemistry, 2014, 159, 8-14.	1.7	30
64	Ï€-Conjugation in Gd ₁₃ Fe ₁₀ C ₁₃ and Its Oxycarbide: Unexpected Connections between Complex Carbides and Simple Organic Molecules. Journal of the American Chemical Society, 2014, 136, 12073-12084.	13.7	9
65	Characterization of the Bridged Hyponitrite Complex $\{[Fe(OEP)] < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < sub>2 < $	4.0	42
66	The Diagnostic Vibrational Signature of Pentacoordination in Heme Carbonyls. Journal of the American Chemical Society, 2014, 136, 9818-9821.	13.7	18
67	Anisotropic Iron Motion in Nitrosyl Iron Porphyrinates: Natural and Synthetic Hemes. Inorganic Chemistry, 2014, 53, 2582-2590.	4.0	6
68	Microfocusing options for the inelastic X-ray scattering beamline at sector 3 of the Advanced Photon Source. Journal of Synchrotron Radiation, 2014, 21, 488-496.	2.4	0
69	Elucidation of the Fe(iv)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature, 2013, 499, 320-323.	27.8	192
70	Quantitative Vibrational Dynamics of the Metal Site in a Tin Porphyrin: An IR, NRVS, and DFT Study. Inorganic Chemistry, 2013, 52, 9948-9953.	4.0	6
71	Probing Heme Vibrational Anisotropy: An Imidazole Orientation Effect?. Inorganic Chemistry, 2013, 52, 11361-11369.	4.0	10
72	Changes in vibrational entropy during the early stages of chemical unmixing in fcc Cu–6% Fe. Acta Materialia, 2013, 61, 7466-7472.	7.9	2

#	Article	IF	CITATIONS
73	Melting of compressed iron by monitoring atomic dynamics. Earth and Planetary Science Letters, 2013, 362, 143-150.	4.4	75
74	Electronic Structure and Biologically Relevant Reactivity of Low-Spin {FeNO} ⁸ Porphyrin Model Complexes: New Insight from a Bis-Picket Fence Porphyrin. Inorganic Chemistry, 2013, 52, 7766-7780.	4.0	105
75	Inelastic X-ray Scattering Studies of the Short-Time Collective Vibrational Motions in Hydrated Lysozyme Powders and Their Possible Relation to Enzymatic Function. Journal of Physical Chemistry B, 2013, 117, 1186-1195.	2.6	21
76	Geometric and Electronic Structure of the Mn(IV)Fe(III) Cofactor in Class Ic Ribonucleotide Reductase: Correlation to the Class Ia Binuclear Non-Heme Iron Enzyme. Journal of the American Chemical Society, 2013, 135, 17573-17584.	13.7	34
77	Effects of Imidazole Deprotonation on Vibrational Spectra of High-Spin Iron(II) Porphyrinates. Inorganic Chemistry, 2013, 52, 3170-3177.	4.0	7
78	Moments in nuclear resonant inelastic x-ray scattering and their applications. Physical Review B, 2013, 87, .	3.2	34
79	Nuclear resonance vibrational spectroscopic and computational study of high-valent diiron complexes relevant to enzyme intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6275-6280.	7.1	12
80	Heme-protein vibrational couplings in cytochrome $\langle i \rangle c \langle i \rangle$ provide a dynamic link that connects the heme-iron and the protein surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8896-8900.	7.1	31
81	Exploration of synchrotron Mössbauer microscopy with micrometer resolution: forward and a new backscattering modality on natural samples. Journal of Synchrotron Radiation, 2012, 19, 814-820.	2.4	14
82	Nuclear Resonance Vibrational Spectra of Five-Coordinate Imidazole-Ligated Iron(II) Porphyrinates. Inorganic Chemistry, 2012, 51, 1359-1370.	4.0	13
83	Vibrational Probes and Determinants of the $\langle i \rangle S \langle i \rangle = 0$ at $\mathbb{E} \langle i \rangle S \langle i \rangle = 2$ Spin Crossover in Five-Coordinate [Fe(TPP)(CN)] $\langle sup \rangle$ a " $\langle sup \rangle$. Inorganic Chemistry, 2012, 51, 11769-11778.	4.0	13
84	Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 2012, 97, 592-597.	1.9	58
85	Phonon-like excitation in secondary and tertiary structure of hydrated protein powders. Soft Matter, 2011, 7, 9848.	2.7	11
86	Structural and Electronic Characterization of Non-Heme Fe(II)–Nitrosyls as Biomimetic Models of the Fe _B Center of Bacterial Nitric Oxide Reductase. Journal of the American Chemical Society, 2011, 133, 16714-16717.	13.7	88
87	Effect of temperature on sound velocities of compressed Fe3C, a candidate component of the Earth's inner core. Earth and Planetary Science Letters, 2011, 309, 213-220.	4.4	43
88	Synchrotron M $\tilde{\mathbf{A}}$ q ssbauer spectroscopy using high-speed shutters. Journal of Synchrotron Radiation, 2011, 18, 183-188.	2.4	18
89	Nuclear Resonance Vibrational Spectroscopy on the Fe ^{IV} /4O <i>S</i> =2 Nonâ€Heme Site in TMG ₃ tren: Experimentally Calibrated Insights into Reactivity. Angewandte Chemie - International Edition, 2011, 50, 3215-3218.	13.8	62
90	New Perspectives on Iron–Ligand Vibrations of Oxyheme Complexes. Chemistry - A European Journal, 2011, 17, 11178-11185.	3.3	21

#	Article	IF	Citations
91	Observation of phonons with resonant inelastic x-ray scattering. Journal of Physics Condensed Matter, 2010, 22, 485601.	1.8	29
92	Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the <i>trans</i> Effect of NO. Inorganic Chemistry, 2010, 49, 7197-7215.	4.0	66
93	Structure and phonon density of states of supported size-selected F57eAu nanoclusters: A nuclear resonant inelastic x-ray scattering study. Applied Physics Letters, 2009, 95, 143103.	3.3	25
94	Sound velocities of compressed Fe3C from simultaneous synchrotron X-ray diffraction and nuclear resonant scattering measurements. Journal of Synchrotron Radiation, 2009, 16, 714-722.	2.4	29
95	Vibrational Dynamics of Iron in Cytochrome <i>c</i>). Journal of Physical Chemistry B, 2009, 113, 2193-2200.	2.6	27
96	Intermediate-spin ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geoscience, 2008, 1, 688-691.	12.9	131
97	Resilience of the Iron Environment in Heme Proteins. Biophysical Journal, 2008, 95, 5874-5889.	0.5	31
98	The possibility of transverse excitation modes in liquid Ga. Journal of Physics Condensed Matter, 2008, 20, 114107.	1.8	22
99	Synchrotron-Derived Vibrational Data Confirm Unprotonated Oxo Ligand in Myoglobin Compound II. Journal of the American Chemical Society, 2008, 130, 1816-1817.	13.7	26
100	Intermolecular Dynamics in Crystalline Iron Octaethylporphyrin (FeOEP). Journal of Physical Chemistry B, 2008, 112, 12656-12661.	2.6	7
101	High-energy phonon confinement in nanoscale metallic multilayers. Physical Review B, 2008, 77, .	3.2	25
102	Interplay of Structure and Vibrational Dynamics in Six-Coordinate Heme Nitrosyls. Journal of the American Chemical Society, 2007, 129, 2200-2201.	13.7	44
103	Quantitative Vibrational Dynamics of Iron in Carbonyl Porphyrins. Biophysical Journal, 2007, 92, 3764-3783.	0.5	49
104	Nuclear resonant forward scattering of synchrotron radiation from 121 Sb at 37.13 keV. Europhysics Letters, 2006, 74, 170-176.	2.0	23
105	Electronic transport and atomic vibrational properties of semiconducting Mg Sn thin film. Phase Transitions, 2006, 79, 839-852.	1.3	5
106	Fe Vibrational Spectroscopy of Myoglobin and Cytochromef. Journal of Physical Chemistry B, 2006, 110, 530-536.	2.6	28
107	Vibrational Spectroscopy and Normal-Mode Analysis of Fe(II) Octaethylporphyrin. Journal of Physical Chemistry B, 2006, 110, 13277-13282.	2.6	17
108	Vibrational dynamics of biological molecules: Multi-quantum contributions. Journal of Physics and Chemistry of Solids, 2005, 66, 2250-2256.	4.0	14

#	Article	IF	Citations
109	Anharmonic motions of Kr in the clathrate hydrate. Nature Materials, 2005, 4, 917-921.	27.5	92
110	Direct Probe of Iron Vibrations Elucidates NO Activation of Heme Proteins. Journal of the American Chemical Society, 2005, 127, 11200-11201.	13.7	59
111	Atomic vibrational density of states in crystalline and amorphous Tb1ÂxFexalloy thin films studied by nuclear resonant inelastic x-ray scattering (NRIXS). Journal of Physics Condensed Matter, 2004, 16, S379-S393.	1.8	13
112	Highly efficient gaseous sample loading technique for diamond anvil cells. Review of Scientific Instruments, 2004, 75, 5149-5151.	1.3	2
113	Partial Phonon Density of States of Dysprosium and its Compounds Measured Using Inelastic Nuclear Resonance Scattering. Hyperfine Interactions, 2004, 153, 17-24.	0.5	6
114	Phonon Density of States and Compression Behavior in Iron Sulfide under Pressure. Physical Review Letters, 2004, 93, 195503.	7.8	30
115	Quantitative Vibrational Dynamics of Iron in Nitrosyl Porphyrins. Journal of the American Chemical Society, 2004, 126, 4211-4227.	13.7	114
116	Direct Determination of the Complete Set of Iron Normal Modes in a Porphyrin-Imidazole Model for Carbonmonoxy-heme Proteins: \hat{A} [Fe(TPP)(CO)(1-Melm)]. Journal of the American Chemical Society, 2003, 125, 6927-6936.	13.7	51
117	Determination of the Complete Set of Iron Normal Modes in the Heme Model Compound FellI(OEP)Cl from Nuclear Resonance Vibrational Spectroscopic Data. Journal of Physical Chemistry B, 2003, 107, 11170-11177.	2.6	19
118	Microscopic Dynamics of Liquid Aluminum Oxide. Science, 2003, 299, 2047-2049.	12.6	71
119	Measuring velocity of sound with nuclear resonant inelastic x-ray scattering. Physical Review B, 2003, 67, .	3.2	102
120	Vibrational dynamics of myoglobin determined by the phonon-assisted Mössbauer effect. Physical Review E, 2002, 65, 051916.	2.1	87
121	A water-cooled compound refractive lens as a white beam collimator. Review of Scientific Instruments, 2002, 73, 1611-1613.	1.3	7
122	High-energy-resolution monochromator for 83Kr nuclear resonant scattering. Review of Scientific Instruments, 2002, 73, 1608-1610.	1.3	16
123	Iron Normal Mode Dynamics in (Nitrosyl)iron(II)tetraphenylporphyrin from X-ray Nuclear Resonance Data. Biophysical Journal, 2002, 82, 2951-2963.	0.5	53
124	Phonon Density of States of Iron up to 153 Gigapascals. Science, 2001, 292, 914-916.	12.6	284
125	Nuclear resonance vibrational spectroscopy of a protein active-site mimic. Journal of Physics Condensed Matter, 2001, 13, 7707-7722.	1.8	113
126	Crystal monochromator with a resolution beyond 108. Journal of Synchrotron Radiation, 2001, 8, 1082-1086.	2.4	21

#	Article	IF	CITATIONS
127	Lattice Dynamics and Inelastic Nuclear Resonant X-Ray Scattering. Hyperfine Interactions, 2001, 135, 295-310.	0.5	12
128	Evidence for an Instability Near Twice the Fermi Wave Vector in the Low Electronic Density Liquid MetalLi(NH3)4. Physical Review Letters, 2001, 86, 2357-2360.	7.8	20
129	Long-Range Reactive Dynamics in Myoglobin. Physical Review Letters, 2001, 86, 4966-4969.	7.8	106
130	Imaging the temporal evolution of nuclear resonant x-ray scattering. Applied Physics Letters, 2001, 78, 2970-2972.	3.3	13
131	Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa. Physical Review Letters, 2001, 87, 255501.	7.8	71
132	Wavelength-dispersive double flat-crystal analyzer for inelastic X-ray scattering. Journal of Synchrotron Radiation, 2000, 7, 333-339.	2.4	2
133	Nuclear forward scattering of synchrotron radiation by deoxymyoglobin. European Biophysics Journal, 2000, 29, 146-152.	2.2	17
134	Atom clusters and vibrational excitations in chemically-disorderedPt357Fe. Physical Review B, 2000, 61, 14517-14522.	3.2	14
135	Experimental demonstration of time-integrated synchrotron-radiation spectroscopy with crossed polarizer and analyzer. Physical Review B, 2000, 61, 4181-4185.	3.2	18
136	Î ³ -Ray Wavelength Standard for Atomic Scales. Physical Review Letters, 2000, 85, 495-498.	7.8	67
137	Coherent Resonant X-Ray Scattering from a Rotating Medium. Physical Review Letters, 2000, 84, 1007-1010.	7.8	46
138	Phonon damping in thin films of Fe. Journal of Applied Physics, 1999, 86, 584-587.	2.5	49
139	A classical Hanbury Brown–Twiss experiment with hard X-rays. Journal of Synchrotron Radiation, 1999, 6, 1065-1066.	2.4	36
140	Optical design for laser Doppler angular encoder with sub-nrad sensitivity. Journal of Synchrotron Radiation, 1998, 5, 826-828.	2.4	1
141	Local Chemical Environments and the Phonon Partial Densities of States of 57Fein 57Fe 3Al. Physical Review Letters, 1998, 80, 3304-3307.	7.8	36
142	Inelastic nuclear resonant scattering with sub-meV energy resolution. Applied Physics Letters, 1997, 71, 2112-2114.	3.3	71
143	Phonons in Nanocrystalline57Fe. Physical Review Letters, 1997, 79, 937-940.	7.8	180
144	Electron emission from Fe57 nuclei excited with synchrotron radiation. Physical Review B, 1996, 53, 171-175.	3.2	21

#	Article	IF	Citations
145	Timeâ€sliced Mössbauer absorption spectroscopy using synchrotron radiation and a resonant Bragg monochromator. Journal of Applied Physics, 1996, 79, 3686-3690.	2.5	13
146	Inelastic nuclear resonant scattering at the Advanced Photon Source (invited). Review of Scientific Instruments, 1996, 67, 3362-3362.	1.3	0
147	Design of high heat load whiteâ€beam slits for wiggler/undulator beamlines at the Advanced Photon Source. Review of Scientific Instruments, 1995, 66, 1792-1794.	1.3	3
148	Precision whiteâ€beam slit design for high powerâ€density xâ€ray undulator beamlines at the Advanced Photon Source. Review of Scientific Instruments, 1995, 66, 1789-1791.	1.3	9
149	Observation of Pure Nuclear Diffraction from a Fe/Cr Antiferromagnetic Multilayer. Physical Review Letters, 1995, 74, 3475-3478.	7.8	59
150	Polarizer/analyzer filter for nuclear resonant scattering of synchrotron radiation. Applied Physics Letters, 1995, 67, 1993-1995.	3.3	56
151	Phonon Density of States Measured by Inelastic Nuclear Resonant Scattering. Physical Review Letters, 1995, 74, 3832-3835.	7.8	442
152	Orientations of oxygen hole states and ionicity of bismuth atoms inBi2Sr2CaCu2O8. Physical Review B, 1994, 50, 6370-6374.	3.2	17
153	Nuclear resonant scattering beamline at the Advanced Photon Source. Hyperfine Interactions, 1994, 90, 323-334.	0.5	36
154	Time resolved nuclear resonant scattering from Sn119 nuclei using synchrotron radiation. Physical Review Letters, 1993, 70, 3351-3354.	7.8	56
155	Mössbauer–Fresnel zone plate. Journal of Applied Physics, 1992, 71, 5709-5711.	2.5	7
156	Xâ€ray dichroism and Faraday effect studies in ordered and disordered Fe3Pt. Review of Scientific Instruments, 1992, 63, 1221-1224.	1.3	11
157	SnO2 grazing-incidence antireflection films for monochromatization of synchrotron radiation: Design, preparation, and characterization. Journal of Applied Physics, 1992, 72, 5668-5675.	2.5	6
158	Determination of the local structure inBalâ^'xKxBiO3by x-ray-absorption spectroscopy. Physical Review B, 1991, 43, 5511-5515.	3.2	79
159	Polarized copperK-edge x-ray-absorption spectra inYBa2Cu3O7â^'y. Physical Review B, 1990, 42, 251-265.	3.2	14
160	Theoretical calculations of x-ray-absorption spectra of copper inLa2CuO4and related oxide compounds. Physical Review B, 1990, 41, 82-95.	3.2	44
161	Effect of Ce doping on the Cu charge in the electron superconductorNd2â^'xCexCuO4. Physical Review B, 1989, 40, 2617-2619.	3.2	66
162	The combined effect of random magnetic field errors and nonzero particle beam emittance on undulator spectral properties (abstract). Review of Scientific Instruments, 1989, 60, 1873-1873.	1.3	0

#	Article	lF	Citations
163	Charge distributions and valency in copper oxide crystals related to superconductivity. Journal of Chemical Physics, 1989, 91, 2983-2992.	3.0	48
164	Nature of empty states in YBa 2 Cu 3 O 7 â 'x. Physical Review B, 1989, 40, 9385-9388.	3.2	23
165	Spectral properties of segmented undulators for the 7â€GeV Advanced Photon Source. Review of Scientific Instruments, 1989, 60, 1820-1823.	1.3	3
166	A new approach to determining the charge distribution in copper compounds. Journal of Physics Condensed Matter, 1989, 1, 6463-6468.	1.8	18
167	Magnetic ordering of Gd and Cu in superconducting and nonsuperconductingGdBa2Cu3O7â~δ. Physical Review B, 1988, 37, 592-594.	3.2	76
168	Magnetic isolation of Gd in superconducting GdBa2Cu3O7â^î. Physical Review B, 1987, 36, 8910-8913.	3. 2	38
169	Effect of magnetic impurities on high-temperature superconductivity inLa1.85Sr0.15CuO4. Physical Review B, 1987, 36, 5258-5262.	3.2	11
170	Superconductivity in La1.85-xNdxSr.15CuO4. Japanese Journal of Applied Physics, 1987, 26, 1087.	1.5	2
171	Structure of Copper Microclusters Isolated in Solid Argon. Physical Review Letters, 1986, 56, 2076-2079.	7.8	230