
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure of joints Cu–Ta, Cu–Ti, Cu–Cu, produced by means of explosive welding: fractal description of interface relief. Composite Interfaces, 2021, 28, 63-76.	2.3	10
2	Silicon–Oxygen Quartz Tetrahedra and Consolidation Processes during High-Pressure Torsion. Russian Metallurgy (Metally), 2021, 2021, 449-453.	0.5	0
3	Comparative characterisation of interfaces for two- and multi-layered Cu-Ta explosively welded composites. Composite Interfaces, 2020, 27, 705-715.	2.3	8
4	Processes of the Self-Organization and Evolution of Metallic and Intermetallic Microstructures under Strong External Influences. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 1203-1209.	0.6	0
5	Processes of Self-Organization and Evolution of the Microstructure of Metals and Intermetallic Compounds under a Strong External Action. Physics of Metals and Metallography, 2018, 119, 1338-1341.	1.0	Ο
6	Microstructural Analysis of the Ni3Ge Intermetallic Compound after High Pressure Torsion. Russian Metallurgy (Metally), 2018, 2018, 929-934.	0.5	1
7	Microstructural Evolution in Ceramics and Glasses during High Pressure Torsion. Russian Metallurgy (Metally), 2018, 2018, 935-940.	0.5	0
8	Interfacial surface relief in explosive welding of homogeneous materials. Welding International, 2018, 32, 714-718.	0.7	0
9	Microstructures upon explosion welding and processes which prevent joining of materials. Letters on Materials, 2018, 8, 252-257.	0.7	2
10	Is it possible for dislocations to self-lock after high-pressure torsion?. Physics of Metals and Metallography, 2017, 118, 802-809.	1.0	2
11	Role of crushing-induced fragmentation in the consolidation of quartz ceramic and glass powders during high-pressure torsion. Russian Metallurgy (Metally), 2017, 2017, 821-830.	0.5	0
12	Fine structure of interphase boundaries in hard alloys of the chromium carbide–titanium system. Russian Journal of Non-Ferrous Metals, 2016, 57, 504-508.	0.6	0
13	Wave formation during explosive welding: the relaxation of a nonequilibrium structure. Physics of Metals and Metallography, 2016, 117, 1219-1225.	1.0	0
14	Formation of Intermetallic Compounds During Explosive Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5461-5473.	2.2	17
15	Strange behavior of dislocations of a certain type: Self-locking. Russian Metallurgy (Metally), 2016, 2016, 2016, 266-285.	0.5	4
16	Quasi-wave shape of an interface upon explosion welding (copper–tantalum, copper–titanium). Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 1273-1278.	0.6	4
17	Multilayer Mg–Ti-based composites produced by explosion welding: Risk zones. Inorganic Materials: Applied Research, 2016, 7, 402-408.	0.5	0
18	Interface after explosion welding: Fractal analysis. Russian Metallurgy (Metally), 2015, 2015, 816-825.	0.5	3

#	Article	IF	CITATIONS
19	Microheterogeneous Structure of Local Melted Zones in the Process of Explosive Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 3569-3580.	2.2	26
20	Interface relief upon explosion welding: Splashes and waves. Physics of Metals and Metallography, 2015, 116, 367-377.	1.0	11
21	Evolution of interface relief during explosive welding: Transitions from splashes to waves. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1118-1121.	0.6	7
22	Risk zones for coke drum shell produced by explosive welding. Journal of Materials Processing Technology, 2015, 215, 79-86.	6.3	4
23	Electron-microscopic examination of the transition zone of aluminum-tantalum bimetallic joints (explosion welding). Physics of Metals and Metallography, 2014, 115, 380-391.	1.0	7
24	Structure of boundaries in composite materials obtained using explosive loading. Physics of Metals and Metallography, 2013, 114, 947-952.	1.0	14
25	Fragmentation processes during explosion welding (review). Russian Metallurgy (Metally), 2013, 2013, 727-737.	0.5	11
26	The problem of intermixing of metals possessing no mutual solubility upon explosion welding (Cu–Ta,) Tj ETQo	q0	T /Qyerlock 1
27	Locking of Dislocations without the Application of an External Stress: Experiment and Theory. Progress in Physics of Metals, 2013, 14, 107-227.	1.5	3
28	Explosive welding: Mixing of metals without mutual solubility (iron-silver). Physics of Metals and Metallography, 2012, 113, 1041-1051.	1.0	8
29	Structure of the transition zone and its influence on the strength of copper-tantalum joint (Explosion welding). Russian Metallurgy (Metally), 2012, 2012, 898-905.	0.5	1
30	The Processes of Fragmentation, Intermixing and Fusion upon Explosion Welding. AASRI Procedia, 2012, 3, 66-72.	0.6	10
31	Layered Metal-intermetallic Composites in Ti-Al System: Strength Under Static and Dynamic Load. AASRI Procedia, 2012, 3, 107-112.	0.6	19
32	Inhomogeneities of the interface produced by explosive welding. Physics of Metals and Metallography, 2012, 113, 176-189.	1.0	20
33	The first observation of dislocation blocking in pure metal without external stress. Crystallography Reports, 2012, 57, 541-548.	0.6	16
34	Detection of (C + A)-type dislocation self-blocking in magnesium. Russian Physics Journal, 2012, 54, 906-913.	0.4	5
35	Self-blocking of dislocations in the intermetallic compound Ni3Ge: reconstruction of a two-valley potential relief. Physics of Metals and Metallography, 2011, 112, 203-212.	1.0	3
36	Self-blocking of dislocations in intermetallic compound Ni3Ge: Cubic slip. Physics of Metals and Metallography, 2011, 111, 385-394.	1.0	5

#	Article	IF	CITATIONS
37	Synthesis and properties of Ti-Al laminated composites with an intermetallic layer. Russian Metallurgy (Metally), 2011, 2011, 356-360.	0.5	6
38	Structure of the welding zone between titanium and orthorhombic titanium aluminide for explosion welding: II. Local melting zones. Russian Metallurgy (Metally), 2011, 2011, 1016-1025.	0.5	6
39	Structure of the welding zone between titanium and orthorhombic titanium aluminide for explosion welding: I. Interface. Russian Metallurgy (Metally), 2011, 2011, 1008-1015.	0.5	5
40	Nanostructure of Vortex During Explosion Welding. Journal of Nanoscience and Nanotechnology, 2011, 11, 8885-8895.	0.9	15
41	Reconstruction of Dislocation Potential Relief by Means of Self-Blocking Effect. Crystallography Reports, 2010, 55, 1025-1030.	0.6	7
42	On the possibility of the self-blocking of dislocations in various materials. Physics of Metals and Metallography, 2009, 108, 88-99.	1.0	4
43	Formation of vortices during explosion welding (titanium-orthorhombic titanium aluminide). Physics of Metals and Metallography, 2009, 108, 353-364.	1.0	13
44	Self-blocking of dislocations: A new concept. Crystallography Reports, 2009, 54, 974-984.	0.6	7
45	Deformation behavior and dislocation structure of CuAu ordered alloy. Gold Bulletin, 2008, 41, 326-335.	2.7	2
46	Some features of the formation and destruction of dislocation barriers in intermetallic compounds: IV. Thermoactivated straightening of dislocations along a preferred direction in TiAl. Physics of Metals and Metallography, 2008, 105, 491-499.	1.0	2
47	Some features of the formation and destruction of dislocation barriers in intermetallic compounds: V. Single-valley and multivalley potential relief for dislocations. Physics of Metals and Metallography, 2008, 105, 553-563.	1.0	1
48	Deformation Behavior of Intermetallics: Models and Experiments. Israel Journal of Chemistry, 2007, 47, 415-421.	2.3	9
49	Some features of the formation and destruction of dislocation barriers in intermetallic compounds: III. Thermoactivated straightening of dislocations along a preferred direction in Ni3Al. Physics of Metals and Metallography, 2007, 104, 514-521.	1.0	2
50	Blocking and self-locking of superdislocations in intermetallics. WIT Transactions on Engineering Sciences, 2007, , .	0.0	3
51	Description of creep with allowance for dislocation multiplication and transformations. Physics of Metals and Metallography, 2006, 101, 231-241.	1.0	Ο
52	Some features of the formation and destruction of dislocation barriers in intermetallic compounds: I. Theory. Physics of Metals and Metallography, 2006, 102, 61-68.	1.0	10
53	Some features of the formation and destruction of dislocation barriers in intermetallic compounds: II. Observation of blocked superidislocations upon heating without stress. Physics of Metals and Metallography, 2006, 102, 69-75.	1.0	6
54	Phase Transformation in Orthorhombic Ti2AlNb Alloys Under Severe Deformation. Materials Research Society Symposia Proceedings, 2004, 842, 381.	0.1	0

#	Article	IF	CITATIONS
55	Phase transformations in Ni ₃ AI, Ti ₃ AI and Ti ₂ AINb intermetallics under shock-wave loading. European Physical Journal Special Topics, 2003, 110, 923-928.	0.2	6
56	Phase transformations in Ni ₃ AI, Ti ₃ AI and Ti ₂ AINb intermetallics under shock-wave loading. European Physical Journal Special Topics, 2003, 110, 923-928.	0.2	0
57	The non-monotonic temperature dependence of the yield stress in TiAl and CuAu alloys. Intermetallics, 2000, 8, 845-853.	3.9	13
58	Anomalies in Deformation Behaviour of TiAl Intermetallic. Progress in Physics of Metals, 2000, 1, 9-48.	1.5	5
59	An Analysis of Heterophase Structures of Ti3Al, TiAl, Ni3Al Intermetallics Synthesized by the Method of the Spherical Shock Wave Action. , 2000, , 109-114.		Ο
60	Shock-Wave Synthesis of Intermetallic Compounds Ti3Al, TiAl Analysis of Heterophase Structure Formation. European Physical Journal Special Topics, 1997, 07, C3-7-C3-12.	0.2	1
61	New concepts of analyzing plastic deformation of TiAl and Ni3Al intermetallic compounds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 153, 356-363.	5.6	9
62	On the Possibility of Describing Lattice Properties of Iridium in Terms of Pseudopotential Theory. Physica Status Solidi (B): Basic Research, 1990, 158, 441-455.	1.5	9
63	Phenomenological theory of low temperature creep with account of several types of dislocation transformations. Physica Status Solidi A, 1981, 66, 293-302.	1.7	3
64	Analysis of the features of the plastic behaviour of superstructure Ll2 under Low temperature creep. Physica Status Solidi A, 1981, 66, 439-444.	1.7	2
65	On the theory of plastic deformation with an account of dislocation transformations of several types. Physica Status Solidi A, 1978, 45, 403-410.	1.7	9
66	Phenomenological theory of plastic deformation with several types of mobile and immobile dislocations. I. Theory. Physica Status Solidi A, 1978, 47, 731-741.	1.7	9
67	Phenomenological theory of plastic deformation with several types of mobile and immobile dislocations II. An analysis of the features of plastic deformation of ordered alloys with a superstructure L12. Physica Status Solidi A, 1978, 49, 517-528.	1.7	8
68	Some aspects of plastic deformation theory with an account for thermally activated dislocation transformations. Physica Status Solidi A, 1976, 38, 653-662.	1.7	14
69	Glissile-sessile transformation superdislocations in ordered Cu3Au-type alloy. Physica Status Solidi A, 1975, 29, K133-K135.	1.7	1
70	Study of broadening of the NMR line due to dislocations by the monte carlo method. Physica Status Solidi (B): Basic Research, 1973, 60, 357-365.	1.5	1
71	Incomplete cross-slip of superdislocation in ordered Cu3Au-type alloy. Physica Status Solidi A, 1973, 18, K129-K133.	1.7	7
72	Dislocation barriers in ordered Cu3Au-type alloy. Physica Status Solidi A, 1973, 20, K53-K56.	1.7	2

#	Article	IF	CITATIONS
73	Deformation of Ordered CuAu Alloy. Physica Status Solidi A, 1971, 6, 323-336.	1.7	11
74	Calculation of activation energy for dislocation movement. Physica Status Solidi (B): Basic Research, 1971, 47, 305-312.	1.5	2
75	Splitting of superdislocations in ordered CuAu-type structure. Physica Status Solidi (B): Basic Research, 1970, 42, 459-468.	1.5	53
76	Effect of Segregation at Dislocations on the Shape of the NMR line. Physica Status Solidi (B): Basic Research, 1967, 20, K103.	1.5	2
77	The Effect of Dislocation Dipoles on the Shape of the Nuclear Magnetic Resonance Line. Physica Status Solidi (B): Basic Research, 1966, 17, 673-681.	1.5	14
78	Influence of the Crystallization Conditions on the Microstructure and Mechanical Properties of TiAl- and Ti3Al-Based Alloys. , 0, , 265-270.		1