

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695309/publications.pdf Version: 2024-02-01



MENCL

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Identification of TGFÎ <sup>2</sup> signalling as a regulator of interneuron neurogenesis in a human pluripotent stem cell model. Neuronal Signaling, 2021, 5, NS20210020.                                                                                                       | 3.2  | 3         |
| 2  | Dopaminergic Progenitors Derived From Epiblast Stem Cells Function Similarly to Primary VM-Derived<br>Progenitors When Transplanted Into a Parkinson's Disease Model. Frontiers in Neuroscience, 2020, 14,<br>312.                                                               | 2.8  | 0         |
| 3  | Pluripotent stem cell derived inhibitory interneurons – principles and applications in health and disease. Neural Regeneration Research, 2020, 15, 251.                                                                                                                          | 3.0  | 1         |
| 4  | Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation InÂVitro<br>and in the Rat Brain. Stem Cell Reports, 2019, 12, 191-200.                                                                                                                | 4.8  | 16        |
| 5  | DMRT5 Together with DMRT3 Directly Controls Hippocampus Development and Neocortical Area Map<br>Formation. Cerebral Cortex, 2018, 28, 493-509.                                                                                                                                   | 2.9  | 32        |
| 6  | miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports, 2018, 10, 1237-1250.                                                                                                                                                 | 4.8  | 47        |
| 7  | Robust Induction of DARPP32-Expressing GABAergic Striatal Neurons from Human Pluripotent Stem<br>Cells. Methods in Molecular Biology, 2018, 1780, 585-605.                                                                                                                       | 0.9  | 5         |
| 8  | DMRT5, DMRT3, and EMX2 Cooperatively Repress <i>Gsx2</i> at the Pallium–Subpallium Boundary to<br>Maintain Cortical Identity in Dorsal Telencephalic Progenitors. Journal of Neuroscience, 2018, 38,<br>9105-9121.                                                               | 3.6  | 34        |
| 9  | Understanding neurodevelopmental disorders using human pluripotent stem cellâ€derived neurons.<br>Brain Pathology, 2017, 27, 508-517.                                                                                                                                            | 4.1  | 6         |
| 10 | The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5599-E5607.                                                     | 7.1  | 33        |
| 11 | FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons. Scientific Reports, 2016, 6, 32488.                                                                                                                          | 3.3  | 16        |
| 12 | Impairment of proteasome and anti-oxidative pathways in the induced pluripotent stem cell model for sporadic Parkinson's disease. Parkinsonism and Related Disorders, 2016, 24, 81-88.                                                                                           | 2.2  | 34        |
| 13 | How to make striatal projection neurons. Neurogenesis (Austin, Tex ), 2015, 2, e1100227.                                                                                                                                                                                         | 1.5  | 11        |
| 14 | Activin A directs striatal projection neuron differentiation of human pluripotent stem cells.<br>Development (Cambridge), 2015, 142, 1375-1386.                                                                                                                                  | 2.5  | 134       |
| 15 | Deriving striatal projection neurons from human pluripotent stem cells with activin A. Neural<br>Regeneration Research, 2015, 10, 1914.                                                                                                                                          | 3.0  | 4         |
| 16 | Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nature Communications, 2012, 3, 841.                                                                                                           | 12.8 | 68        |
| 17 | Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development (Cambridge), 2011, 138, 4363-4374.                                                                             | 2.5  | 83        |
| 18 | Doublesex and mab-3–related transcription factor 5 promotes midbrain dopaminergic identity in<br>pluripotent stem cells by enforcing a ventral-medial progenitor fate. Proceedings of the National<br>Academy of Sciences of the United States of America, 2011, 108, 9131-9136. | 7.1  | 35        |

| #  | Article                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture.<br>Nature Biotechnology, 2003, 21, 183-186. | 17.5 | 1,374     |