Youli Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4695241/publications.pdf Version: 2024-02-01

Υουμι Χιλο

#	Article	IF	CITATIONS
1	Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biology, 2021, 19, 122.	3.8	23
2	Discovery and Biosynthesis of Ascorbylated <i>Securinega</i> Alkaloids. ACS Catalysis, 2021, 11, 8818-8828.	11.2	9
3	The 5-formyl-tetrahydrofolate proteome links folates with C/N metabolism and reveals feedback regulation of folate biosynthesis. Plant Cell, 2021, 33, 3367-3385.	6.6	12
4	Chemoproteomic-Driven Discovery of Covalent PROTACs. Biochemistry, 2020, 59, 128-129.	2.5	4
5	Uncovering the functional residues of <i>Arabidopsis</i> isoprenoid biosynthesis enzyme HDS. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 355-361.	7.1	10
6	Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in <i>Clostridium beijerinckii</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	6
7	A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. Journal of Biological Chemistry, 2020, 295, 5051-5066.	3.4	27
8	Molecular Imaging and <i>In Situ</i> Quantitative Profiling of Fatty Acid Synthase with a Chemical Probe. Analytical Chemistry, 2020, 92, 4419-4426.	6.5	7
9	Evolution of the Cholesterol Biosynthesis Pathway in Animals. Molecular Biology and Evolution, 2019, 36, 2548-2556.	8.9	37
10	Colocalization Strategy Unveils an Underside Binding Site in the Transmembrane Domain of Smoothened Receptor. Journal of Medicinal Chemistry, 2019, 62, 9983-9989.	6.4	5
11	A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 2019, 12, 1561-1576.	8.3	106
12	Building Microbial Hosts for Heterologous Production of <i>N</i> -Methylpyrrolinium. ACS Synthetic Biology, 2019, 8, 257-263.	3.8	16
13	De Novo Production of the Plant-Derived Tropine and Pseudotropine in Yeast. ACS Synthetic Biology, 2019, 8, 1257-1262.	3.8	27
14	Dehydrocurvularin is a potent antineoplastic agent irreversibly blocking ATP-citrate lyase: evidence from chemoproteomics. Chemical Communications, 2019, 55, 4194-4197.	4.1	19
15	Selection of Reference Genes for Expression Analysis in Chinese Medicinal Herb Huperzia serrata. Frontiers in Pharmacology, 2019, 10, 44.	3.5	9
16	Comprehensive relative quantitative metabolomics analysis of lycopodium alkaloids in different tissues of Huperzia serrata. Synthetic and Systems Biotechnology, 2018, 3, 44-55.	3.7	11
17	Insights into Pipecolic Acid Biosynthesis in <i>Huperzia serrata</i> . Organic Letters, 2018, 20, 2195-2198.	4.6	37
18	Disruption of the RNA exosome reveals the hidden face of the malaria parasite transcriptome. RNA Biology, 2018, 15, 1206-1214.	3.1	16

Youli Xiao

#	Article	IF	CITATIONS
19	Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast. Phytochemistry, 2018, 155, 83-92.	2.9	21
20	Chemoproteomics Reveals the Antiproliferative Potential of Parkinson's Disease Kinase Inhibitor LRRK2-IN-1 by Targeting PCNA Protein. Molecular Pharmaceutics, 2018, 15, 3252-3259.	4.6	13
21	Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. Journal of Biological Chemistry, 2018, 293, 13821-13833.	3.4	43
22	Development of Photoaffinity Probe for the Discovery of Steviol Glycosides Biosynthesis Pathway in <i>Stevia rebuadiana</i> and Rapid Substrate Screening. ACS Chemical Biology, 2018, 13, 1944-1949.	3.4	28
23	Deciphering the late steps of rifamycin biosynthesis. Nature Communications, 2018, 9, 2342.	12.8	36
24	Discovery of <i>Arabidopsis</i> UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chemical Communications, 2018, 54, 7179-7182.	4.1	15
25	Synthetic Biology Studies of Monoterpene Indole Alkaloids. Chinese Journal of Organic Chemistry, 2018, 38, 2243.	1.3	6
26	Identification and characterization of L-lysine decarboxylase from Huperzia serrata and its role in the metabolic pathway of lycopodium alkaloid. Phytochemistry, 2017, 136, 23-30.	2.9	43
27	Clobal transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. BMC Genomics, 2017, 18, 245.	2.8	31
28	Chemical proteomics reveal CD147 as a functional target of pseudolaric acid B in human cancer cells. Chemical Communications, 2017, 53, 8671-8674.	4.1	21
29	Competitive profiling of celastrol targets in human cervical cancer HeLa cells via quantitative chemical proteomics. Molecular BioSystems, 2017, 13, 83-91.	2.9	40
30	Construction of an octosyl acid backbone catalyzed by a radical S-adenosylmethionine enzyme and a phosphatase in the biosynthesis of high-carbon sugar nucleoside antibiotics. Chemical Science, 2017, 8, 444-451.	7.4	23
31	Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genetics, 2017, 13, e1006703.	3.5	32
32	Characterization of the Artemisinin Binding Site for Translationally Controlled Tumor Protein (TCTP) by Bioorthogonal Click Chemistry. Bioconjugate Chemistry, 2016, 27, 2828-2833.	3.6	25
33	Global profiling of cellular targets of gambogic acid by quantitative chemical proteomics. Chemical Communications, 2016, 52, 14035-14038.	4.1	22
34	Structural basis of rifampin inactivation by rifampin phosphotransferase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3803-3808.	7.1	22
35	Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chemical Biology, 2016, 11, 882-888.	3.4	65
36	Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis. Annual Review of Biochemistry, 2013, 82, 497-530.	11.1	248

Youli Xiao

#	Article	IF	CITATIONS
37	Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman, and UV–Visible Spectroscopic Analysis of a Rieske-Type Demethylase. Journal of the American Chemical Society, 2012, 134, 2823-2834.	13.7	48
38	Study of IspH, a Key Enzyme in the Methylerythritol Phosphate Pathway Using Fluoro-Substituted Substrate Analogues. Organic Letters, 2011, 13, 5912-5915.	4.6	19
39	Mechanistic Studies of an IspHâ€Catalyzed Reaction: Implications for Substrate Binding and Protonation in the Biosynthesis of Isoprenoids. Angewandte Chemie - International Edition, 2011, 50, 12304-12307.	13.8	16
40	lspG atalyzed Positional Isotopic Exchange in Methylerythritol Cyclodiphosphate of the Deoxyxylulose Phosphate Pathway: Mechanistic Implications. ChemBioChem, 2011, 12, 527-530.	2.6	18
41	Methylerythritol cyclodiphosphate (MEcPP) in deoxyxylulose phosphate pathway: synthesis from an epoxide and mechanisms. Chemical Communications, 2010, 46, 7220.	4.1	19
42	Synthesis of [1-13C] and stereo-specifically [1-2H] labeled fluorinated substrate analogues of IspH enzyme in the deoxyxylulose phosphate pathway. Tetrahedron Letters, 2009, 50, 309-311.	1.4	1
43	IspG Enzyme Activity in the Deoxyxylulose Phosphate Pathway: Roles of the Ironâ^'Sulfur Cluster. Biochemistry, 2009, 48, 10483-10485.	2.5	27
44	lspG Converts an Epoxide Substrate Analogue to (<i>E</i>)-4-Hydroxy-3-methylbut-2-enyl Diphosphate: Implications for IspG Catalysis in Isoprenoid Biosynthesis. Journal of the American Chemical Society, 2009, 131, 17734-17735.	13.7	31
45	Revisiting the IspH Catalytic System in the Deoxyxylulose Phosphate Pathway: Achieving High Activity. Journal of the American Chemical Society, 2009, 131, 9931-9933.	13.7	84
46	Prenyltransferase substrate binding pocket flexibility and its application in isoprenoid profiling. Molecular BioSystems, 2009, 5, 913.	2.9	3
47	lspH Protein of the Deoxyxylulose Phosphate Pathway: Mechanistic Studies with C ₁ â€Deuteriumâ€Labeled Substrate and Fluorinated Analogue. Angewandte Chemie - International Edition, 2008, 47, 9722-9725.	13.8	35
48	Syntheses of the P-Methylase Substrates of the Bialaphos Biosynthetic Pathway. Organic Letters, 2008, 10, 5521-5524.	4.6	15
49	Mechanistic Studies of IspH in the Deoxyxylulose Phosphate Pathway:  Heterolytic Câ^'O Bond Cleavage at C ₄ Position. Journal of the American Chemical Society, 2008, 130, 2164-2165.	13.7	46
50	Intramolecularly Dinuclear Magnesium Complex Catalyzed Copolymerization of Cyclohexene Oxide with CO2under Ambient CO2Pressure:Â Kinetics and Mechanism. Macromolecules, 2006, 39, 128-137.	4.8	176
51	Copolymerization of Cyclohexene Oxide with CO2 by Using Intramolecular Dinuclear Zinc Catalysts. Chemistry - A European Journal, 2005, 11, 3668-3678.	3.3	213