
Stavroula Baritaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methylation Status of Corticotropin-Releasing Factor (CRF) Receptor Genes in Colorectal Cancer. Journal of Clinical Medicine, 2021, 10, 2680.	2.4	9
2	Long Non-Coding RNAs (IncRNAs) in Response and Resistance to Cancer Immunosurveillance and Immunotherapy. Cells, 2021, 10, 3313.	4.1	24
3	RKIP Pleiotropic Activities in Cancer and Inflammatory Diseases: Role in Immunity. Cancers, 2021, 13, 6247.	3.7	5
4	Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. International Journal of Molecular Sciences, 2020, 21, 6658.	4.1	18
5	Corticotropin Releasing Factor Receptors in breast cancer: Expression and activity in hormone-dependent growth in vitro. Peptides, 2020, 129, 170316.	2.4	4
6	Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. Journal of Clinical Medicine, 2019, 8, 1669.	2.4	31
7	Current Perspectives in Cancer Immunotherapy. Cancers, 2019, 11, 1472.	3.7	149
8	Do urocortins have a role in treating cardiovascular disease?. Drug Discovery Today, 2019, 24, 279-284.	6.4	8
9	CRHR2/Ucn2 signaling is a novel regulator of miRâ€7/YY1/Fas circuitry contributing to reversal of colorectal cancer cell resistance to Fasâ€mediated apoptosis. International Journal of Cancer, 2018, 142, 334-346.	5.1	33
10	RKIP: A Key Regulator in Tumor Metastasis Initiation and Resistance to Apoptosis: Therapeutic Targeting and Impact. Cancers, 2018, 10, 287.	3.7	53
11	Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resistance Updates, 2017, 30, 28-38.	14.4	39
12	Corticotropin-Releasing Hormone Receptor 2 Signaling Promotes Mucosal Repair Responses after Colitis. American Journal of Pathology, 2016, 186, 134-144.	3.8	21
13	Diminished Expression of Corticotropin-Releasing Hormone Receptor 2 in Human Colon Cancer Promotes Tumor Growth and Epithelial-to-Mesenchymal Transition via Persistent Interleukin-6/Stat3 Signaling. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 610-630.	4.5	36
14	Overexpression of Yin Yang 1 in bone marrow-derived human multiple myeloma and its clinical significance. International Journal of Oncology, 2014, 45, 1184-1192.	3.3	26
15	Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer. Nitric Oxide - Biology and Chemistry, 2013, 29, 17-24.	2.7	57
16	Roles Each of Snail, Yin Yang 1, and RKIP in the Regulation of Tumor Cells Chemo- Immuno-Resistance to Apoptosis. Forum on Immunopathological Diseases and Therapeutics, 2013, 4, 79-92.	0.1	16
17	Galiximab Signals B-NHL Cells and Inhibits the Activities of NF-κB–Induced YY1- and Snail-Resistant Factors: Mechanism of Sensitization to Apoptosis by Chemoimmunotherapeutic Drugs. Molecular Cancer Therapeutics, 2012, 11, 572-581.	4.1	20
18	Inhibition of Epithelial-to-Mesenchymal Transition (EMT) in Cancer by Nitric Oxide: Pivotal Roles of Nitrosylation of NF-κB, YY1 and Snail. Forum on Immunopathological Diseases and Therapeutics, 2012, 3, 125-133.	0.1	24

STAVROULA BARITAKI

#	Article	IF	CITATIONS
19	A potential mechanism of rituximab-induced inhibition of tumor growth through its sensitization to tumor necrosis factor-related apoptosis-inducing ligand-expressing host cytotoxic cells. Leukemia and Lymphoma, 2011, 52, 108-121.	1.3	31
20	The anti-CD20 mAb LFB-R603 interrupts the dysregulated NF-κB/Snail/RKIP/PTEN resistance loop in B-NHL cells: Role in sensitization to TRAIL apoptosis. International Journal of Oncology, 2011, 38, 1683-94.	3.3	25
21	The Novel Role of Yin Yang 1 in the Regulation of Epithelial to Mesenchymal Transition in Cancer Via the Dysregulated NF-κB/Snail/YY1/RKIP/PTEN Circuitry. Critical Reviews in Oncogenesis, 2011, 16, 211-226.	0.4	75
22	Overexpression of Yin Yang 1 in the Pathogenesis of Human Hematopoietic Malignancies. Critical Reviews in Oncogenesis, 2011, 16, 261-267.	0.4	18
23	Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. Cell Cycle, 2011, 10, 2792-2805.	2.6	45
24	Unique Pattern of Overexpression of Raf-1 Kinase Inhibitory Protein in Its Inactivated Phosphorylated Form in Human Multiple Myeloma. Forum on Immunopathological Diseases and Therapeutics, 2011, 2, 179-188.	0.1	14
25	Targeting the Over-Expressed Transcription Factor Yin-Yang 1 (YY1) Sensitizes Resistant Multiple Myeloma (MM) Cell Lines to Apoptosis by Bortezomib or Melphalan,. Blood, 2011, 118, 3991-3991.	1.4	0
26	Mechanisms of nitric oxide-mediated inhibition of EMT in cancer. Cell Cycle, 2010, 9, 4931-4940.	2.6	97
27	Viral Infection and Cancer: The NF-κB/Snail/RKIP Loop Regulates Target Cell Sensitivity to Apoptosis by Cytotoxic Lymphocytes. Critical Reviews in Immunology, 2010, 30, 31-46.	0.5	29
28	Reversal of Drug/TRAIL-Resistant B-NHL Cells to Apoptosis by the Combination of Rituximab (anti-CD20) and Either Mapatumumab or Lexatumumab. Blood, 2010, 116, 4931-4931.	1.4	0
29	Photodynamic Therapy (PDT)-Mediated Inhibition of the Transcription Factor Yin Yang 1 (YY1) That Regulates Resistance In Lymphoma. Blood, 2010, 116, 5113-5113.	1.4	0
30	Pivotal Roles of Snail Inhibition and RKIP Induction by the Proteasome Inhibitor NPI-0052 in Tumor Cell Chemoimmunosensitization. Cancer Research, 2009, 69, 8376-8385.	0.9	95
31	Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide - Biology and Chemistry, 2009, 20, 39-52.	2.7	81
32	YY1 Over-Expression in Human Brain Gliomas and Meningiomas Correlates with TGF-β1, IGF-1 and FGF-2 mRNA Levels. Cancer Investigation, 2009, 27, 184-192.	1.3	50
33	Inhibition of Yin Yang 1-Dependent Repressor Activity of DR5 Transcription and Expression by the Novel Proteasome Inhibitor NPI-0052 Contributes to its TRAIL-Enhanced Apoptosis in Cancer Cells. Journal of Immunology, 2008, 180, 6199-6210.	0.8	78
34	Synergy in Apoptosis Is Achieved in B-NHL by the Combination of Rituximab and the Novel Proteasome Inhibitor NPI-0052: Pivotal Role of Induction of the Immune Surveillance Cancer Gene Product RKIP. Blood, 2008, 112, 4973-4973.	1.4	0
35	Expression, Role in Transformation and Prognostic Significance of the Transcription Factor Yin Yang 1 (YY1) in Non-Hodgkin's Lymphoma: Analyses in NHL Tissues by Experimental and Bioinformatic Approaches. Blood, 2008, 112, 2827-2827.	1.4	1
36	Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: up-regulation of DR5 and inhibition of Yin Yang 1. Molecular Cancer Therapeutics, 2007, 6, 1387-1399.	4.1	144

#	Article	IF	CITATIONS
37	Regulation of Tumor Cell Sensitivity to TRAIL-Induced Apoptosis by the Metastatic Suppressor Raf Kinase Inhibitor Protein via Yin Yang 1 Inhibition and Death Receptor 5 Up-Regulation. Journal of Immunology, 2007, 179, 5441-5453.	0.8	101
38	Reversal of Tumor Resistance to Apoptotic Stimuli by Alteration of Membrane Fluidity: Therapeutic Implications. Advances in Cancer Research, 2007, 98, 149-190.	5.0	71
39	Rituximab Sensitizes TRAIL-Resistant B-NHL Lines to Apoptosis by Both TRAIL and Fully Humanized Antibodies Targeting TRAIL-R1 (Mapatumumab) and TRAIL-R2 (Lexatumumab) Blood, 2007, 110, 2350-2350.	1.4	1
40	Overexpression of VEGF and TGF-beta1 mRNA in Pap smears correlates with progression of cervical intraepithelial neoplasia to cancer: implication of YY1 in cervical tumorigenesis and HPV infection. International Journal of Oncology, 2007, 31, 69-79.	3.3	38
41	Nitric Oxide Sensitizes B-NHL Cells to TRAIL-Mediated Apoptosis through Induction of RKIP, Inhibition of YY1 and Upregulation of DR5 Blood, 2006, 108, 4604-4604.	1.4	1