Yusuke Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694970/publications.pdf Version: 2024-02-01

VUSLIKE ONO

#	Article	IF	CITATIONS
1	An in vitro Mechanical Damage Model of Isolated Myofibers in a Floating Culture Condition. Bio-protocol, 2022, 12, e4280.	0.4	1
2	The endothelial Dll4–muscular Notch2 axis regulates skeletal muscle mass. Nature Metabolism, 2022, 4, 180-189.	11.9	15
3	Uhrf1 governs the proliferation and differentiation of muscle satellite cells. IScience, 2022, 25, 103928.	4.1	4
4	The body region specificity in murine models of muscle regeneration and atrophy. Acta Physiologica, 2021, 231, e13553.	3.8	14
5	Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Science Advances, 2021, 7, .	10.3	21
6	Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Communications Biology, 2021, 4, 1264.	4.4	6
7	Damaged Myofiber-Derived Metabolic Enzymes Act as Activators of Muscle Satellite Cells. Stem Cell Reports, 2020, 15, 926-940.	4.8	33
8	Inducible Rpt3, a Proteasome Component, Knockout in Adult Skeletal Muscle Results in Muscle Atrophy. Frontiers in Cell and Developmental Biology, 2020, 8, 859.	3.7	8
9	Estrogen Receptor \hat{l}^2 Controls Muscle Growth and Regeneration in Young Female Mice. Stem Cell Reports, 2020, 15, 577-586.	4.8	40
10	A Modified Pre-plating Method for High-Yield and High-Purity Muscle Stem Cell Isolation From Human/Mouse Skeletal Muscle Tissues. Frontiers in Cell and Developmental Biology, 2020, 8, 793.	3.7	20
11	Metabolomic Analysis of Skeletal Muscle in Aged Mice. Scientific Reports, 2019, 9, 10425.	3.3	76
12	Distinct Roles of Zmynd17 and PGC1α in Mitochondrial Quality Control and Biogenesis in Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2019, 7, 330.	3.7	8
13	Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration. Nature Communications, 2018, 9, 1400.	12.8	23
14	Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration. FASEB Journal, 2018, 32, 1452-1467.	0.5	26
15	Notch1 and Notch2 Coordinately Regulate Stem Cell Function in the Quiescent and Activated States of Muscle Satellite Cells. Stem Cells, 2018, 36, 278-285.	3.2	76
16	The Ubiquitin-Proteasome System Is Indispensable for the Maintenance of Muscle Stem Cells. Stem Cell Reports, 2018, 11, 1523-1538.	4.8	54
17	Notch signaling in the regulation of skeletal muscle stem cells. The Journal of Physical Fitness and Sports Medicine, 2018, 7, 213-219.	0.3	2
18	Zmynd17 controls muscle mitochondrial quality and wholeâ€body metabolism. FASEB Journal, 2018, 32, 5012-5025.	0.5	23

Yusuke Ono

#	Article	IF	CITATIONS
19	Visualization of PAX7 protein dynamics in muscle satellite cells in a YFP knock-in-mouse line. Skeletal Muscle, 2018, 8, 26.	4.2	25
20	Prenatal myonuclei play a crucial role in skeletal muscle hypertrophy in rodents. American Journal of Physiology - Cell Physiology, 2017, 312, C233-C243.	4.6	6
21	The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. Journal of Biological Chemistry, 2017, 292, 12885-12894.	3.4	30
22	Soymilk Improves Muscle Weakness in Young Ovariectomized Female Mice. Nutrients, 2017, 9, 834.	4.1	6
23	elF2α, a potential target for stem cell-based therapies. Stem Cell Investigation, 2016, 3, 30-30.	3.0	0
24	Visualizing the Functional Heterogeneity of Muscle Stem Cells. Methods in Molecular Biology, 2016, 1516, 183-193.	0.9	12
25	Estrogens maintain skeletal muscle and satellite cell functions. Journal of Endocrinology, 2016, 229, 267-275.	2.6	107
26	Potency of umbilical cord blood- and Wharton's jelly-derived mesenchymal stem cells for scarless wound healing. Scientific Reports, 2016, 6, 18844.	3.3	80
27	FOXO1 delays skeletal muscle regeneration and suppresses myoblast proliferation. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1531-1535.	1.3	16
28	Evaluation of an inÂvitro muscle contraction model in mouse primary cultured myotubes. Analytical Biochemistry, 2016, 497, 36-38.	2.4	15
29	μ rystallin controls muscle function through thyroid hormone action. FASEB Journal, 2016, 30, 1733-1740.	0.5	36
30	Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells. Physiological Reports, 2015, 3, e12377.	1.7	16
31	Estrogen deficiency heterogeneously affects tissue specific stem cells in mice. Scientific Reports, 2015, 5, 12861.	3.3	25
32	Muscle Stem Cell Fate Is Controlled by the Cell-Polarity Protein Scrib. Cell Reports, 2015, 10, 1135-1148.	6.4	58
33	Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice. Scientific Reports, 2015, 5, 8055.	3.3	29
34	Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma. Journal of Gastroenterology, 2015, 50, 975-983.	5.1	14
35	Scribble dictates orderly stem cell fate. Oncotarget, 2015, 6, 18738-18739.	1.8	1
36	Enhanced Nox1 expression and oxidative stress resistance in c-kit-positive hematopoietic stem/progenitor cells. Biochemical and Biophysical Research Communications, 2014, 454, 376-380.	2.1	7

Yusuke Ono

#	Article	IF	CITATIONS
37	The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures. Biochemical and Biophysical Research Communications, 2014, 452, 548-553.	2.1	14
38	Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells. Scientific Reports, 2014, 4, 3779.	3.3	18
39	Satellite cell heterogeneity and hierarchy in skeletal muscle. The Journal of Physical Fitness and Sports Medicine, 2014, 3, 229-234.	0.3	6
40	Culture under low physiological oxygen conditions improves the stemness and quality of induced pluripotent stem cells. Journal of Cellular Physiology, 2013, 228, 2159-2166.	4.1	30
41	Placental extract protects bone marrow-derived stem/progenitor cells against radiation injury through anti-inflammatory activity. Journal of Radiation Research, 2013, 54, 268-276.	1.6	31
42	Nicaraven Attenuates Radiation-Induced Injury in Hematopoietic Stem/Progenitor Cells in Mice. PLoS ONE, 2013, 8, e60023.	2.5	19
43	Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. Journal of Cell Science, 2012, 125, 1309-1317.	2.0	92
44	Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. Development (Cambridge), 2012, 139, e707-e707.	2.5	0
45	BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death and Differentiation, 2011, 18, 222-234.	11.2	156
46	Suppression of BMP-Smad Signaling Axis-Induced Osteoblastic Differentiation by Small C-terminal Domain Phosphatase 1, a Smad Phosphatase. Molecular Endocrinology, 2011, 25, 474-481.	3.7	27
47	Six family genes control the proliferation and differentiation of muscle satellite cells. Experimental Cell Research, 2010, 316, 2932-2944.	2.6	56
48	Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Developmental Biology, 2010, 337, 29-41.	2.0	177
49	Functional heterogeneity of muscle satellite cells in both somiteâ€derived and branchiomeric muscles. FASEB Journal, 2010, 24, 824.6.	0.5	0
50	Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells. PLoS ONE, 2009, 4, e5205.	2.5	151
51	Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a Î ³ -secretase-independent manner. Journal of Cell Science, 2009, 122, 4427-4438.	2.0	27
52	Acute stress-induced colonic tissue HSP70 expression requires commensal bacterial components and intrinsic glucocorticoid. Brain, Behavior, and Immunity, 2009, 23, 108-115.	4.1	26
53	Decreased muscle atrophy Fâ€box (MAFbx) expression in regenerating muscle after muscleâ€damaging exercise. Muscle and Nerve, 2008, 38, 1246-1253.	2.2	19
54	β-catenin promotes self-renewal of skeletal-muscle satellite cells. Journal of Cell Science, 2008, 121, 1373-1382.	2.0	59

#	Article	IF	CITATIONS
55	Notch2 negatively regulates myofibroblastic differentiation of myoblasts. Journal of Cellular Physiology, 2007, 210, 358-369.	4.1	55
56	Knockdown of hypoxiaâ€inducible factorâ€1α by siRNA inhibits C2C12 myoblast differentiation. Journal of Cellular Biochemistry, 2006, 98, 642-649.	2.6	41