Maria Grazia Lampugnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694949/publications.pdf

Version: 2024-02-01

69 papers 10,672 citations

42 h-index

66315

98753 67 g-index

72 all docs 72 docs citations

times ranked

72

10064 citing authors

#	Article	IF	CITATIONS
1	Inflammation and neutrophil extracellular traps in cerebral cavernous malformation. Cellular and Molecular Life Sciences, 2022, 79, 206.	2.4	12
2	Propranolol Reduces the Development of Lesions and Rescues Barrier Function in Cerebral Cavernous Malformations. Stroke, 2021, 52, 1418-1427.	1.0	27
3	JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. Circulation Research, 2020, 127, 1056-1073.	2.0	60
4	Fgfbp1 promotes blood-brain barrier development by regulating collagen IV deposition and maintaining Wnt/ \hat{l}^2 -catenin signaling. Development (Cambridge), 2020, 147, .	1.2	22
5	Propranolol for familial cerebral cavernous malformation (Treat_CCM): study protocol for a randomized controlled pilot trial. Trials, 2020, 21, 401.	0.7	37
6	Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. ELife, 2020, 9, .	2.8	42
7	Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nature Communications, 2019, 10, 2761.	5.8	87
8	Vascular Endothelial (VE)-Cadherin, Endothelial Adherens Junctions, and Vascular Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029322.	2.3	75
9	Endothelial cell transitions. Science, 2018, 362, 746-747.	6.0	42
10	Endothelial cell disease: emerging knowledge from cerebral cavernous malformations. Current Opinion in Hematology, 2017, 24, 256-264.	1.2	24
11	Deregulated TGF-β/BMP Signaling in Vascular Malformations. Circulation Research, 2017, 121, 981-999.	2.0	83
12	<scp>KLF</scp> 4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Molecular Medicine, 2016, 8, 6-24.	3.3	141
13	Endothelial Cells Lining Sporadic Cerebral Cavernous Malformation Cavernomas Undergo Endothelial-to-Mesenchymal Transition. Stroke, 2016, 47, 886-890.	1.0	52
14	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of General Physiology, 2016, 147, 1472OIA9.	0.9	0
15	The role of microvascular endothelial WNT signaling the formation of the blood brain barrier. SpringerPlus, 2015, 4, L47.	1.2	3
16	The actin-binding protein EPS8 binds VE-cadherin and modulates YAP localization and signaling. Journal of Cell Biology, 2015, 211, 1177-1192.	2.3	62
17	Sulindac metabolites decrease cerebrovascular malformations in <i>CCM3</i> -knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8421-8426.	3.3	102
18	Differential adhesion drives angiogenesis. Nature Cell Biology, 2014, 16, 305-306.	4.6	12

#	Article	IF	CITATIONS
19	VE-cadherin at a glance. Cell and Tissue Research, 2014, 355, 515-522.	1.5	43
20	Dll4 and PDGF-BB Convert Committed Skeletal Myoblasts to Pericytes without Erasing Their Myogenic Memory. Developmental Cell, 2013, 24, 586-599.	3.1	52
21	EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature, 2013, 498, 492-496.	13.7	403
22	Endothelial Cell-to-Cell Junctions: Adhesion and Signaling in Physiology and Pathology. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006528-a006528.	2.9	53
23	Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood, 2012, 119, 2159-2170.	0.6	87
24	Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nature Communications, 2012, 3, 1208.	5.8	387
25	CCM1 regulates vascular-lumen organization by inducing endothelial polarity. Journal of Cell Science, 2010, 123, 1073-1080.	1.2	157
26	Endothelial adherens junctions and the actin cytoskeleton: an 'infinity net'?. Journal of Biology, 2010, 9, 16.	2.7	33
27	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	13.5	727
28	VE-cadherin is a critical endothelial regulator of TGF- \hat{l}^2 signalling. EMBO Journal, 2008, 27, 993-1004.	3.5	146
29	Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke. DMM Disease Models and Mechanisms, 2008, 1, 275-281.	1.2	66
30	The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 2008, 121, 2115-2122.	1.2	808
31	Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. Journal of Cell Science, 2008, 121, 29-37.	1.2	148
32	The Control of Endothelial Cell Functions by Adherens Junctions. Novartis Foundation Symposium, 2007, 283, 4-17.	1.2	33
33	Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis. Thrombosis Research, 2007, 120, S1-S6.	0.8	76
34	Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. Journal of Cell Biology, 2006, 174, 593-604.	2.3	480
35	Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thrombosis and Haemostasis, 2005, 93, 1041-1046.	1.8	27
36	Endothelial Cell Permeability Assays in Culture. , 2004, , 103-113.		2

#	Article	IF	Citations
37	Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, \hat{l}^2 -catenin, and the phosphatase DEP-1/CD148. Journal of Cell Biology, 2003, 161, 793-804.	2.3	374
38	Vascular Endothelial Growth Factor Induces Shc Association With Vascular Endothelial Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 617-622.	1.1	69
39	VE-Cadherin Regulates Endothelial Actin Activating Rac and Increasing Membrane Association of Tiam. Molecular Biology of the Cell, 2002, 13, 1175-1189.	0.9	226
40	A monoclonal antibody to vascular endothelial–cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood, 2002, 100, 905-911.	0.6	188
41	Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood, 2001, 97, 1679-1684.	0.6	276
42	Histamine Induces Tyrosine Phosphorylation of Endothelial Cell-to-Cell Adherens Junctions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 2286-2297.	1.1	219
43	Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9815-9820.	3.3	626
44	Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Current Opinion in Cell Biology, 1999, 11, 573-581.	2.6	65
45	Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis. Cell, 1999, 98, 147-157.	13.5	1,167
46	Vascular Endothelial (VE)-Cadherin: Only an Intercellular Glue?. Experimental Cell Research, 1999, 252, 13-19.	1.2	217
47	Interendothelial junctions: structure, signalling and functional roles. Current Opinion in Cell Biology, 1997, 9, 674-682.	2.6	210
48	Intercellular Junctions in the Endothelium and the Control of Vascular Permeability. Annals of the New York Academy of Sciences, 1997, 811, 36-44.	1.8	22
49	Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions Journal of Cell Biology, 1996, 135, 497-510.	2.3	306
50	Catenin-dependent and -independent Functions of Vascular Endothelial Cadherin. Journal of Biological Chemistry, 1995, 270, 30965-30972.	1.6	195
51	Endothelial cellâ€toâ€cell junctions. FASEB Journal, 1995, 9, 910-918.	0.2	422
52	The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin) Journal of Cell Biology, 1995, 129, 203-217.	2.3	545
53	Structural Characteristics and Functional Role of Endothelial Cell to Cell Junctions. Endothelium: Journal of Endothelial Cell Research, 1994, 2, 1-10.	1.7	15
54	Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells Journal of Cell Biology, 1994, 126, 247-258.	2.3	183

#	Article	IF	CITATIONS
55	Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. Journal of Materials Science: Materials in Medicine, 1994, 5, 393-396.	1.7	189
56	Comparative biological tests on segmented polyurethanes for cardio-vascular applications. Clinical Materials, 1993, 12, 17-23.	0.5	13
57	1 Endothelial cell-to-cell junctions. Structural characteristics and functional role in the regulation of vascular permeability and leukocyte extravasation. Best Practice and Research: Clinical Haematology, 1993, 6, 539-558.	1.1	45
58	Interleukin-1 and Tumor Necrosis Factor Induce Transient Expression of an Inhibitor of Nuclear Factor kB in Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 1993, 1, 161-165.	1.7	8
59	An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion Journal of Cell Biology, 1991, 112, 335-344.	2.3	106
60	The role of integrins in the maintenance of endothelial monolayer integrity Journal of Cell Biology, 1991, 112, 479-490.	2.3	278
61	c-fos and c-myc Expression in human endothelial cells as a function of different culture conditions. Experimental Cell Research, 1990, 186, 381-384.	1.2	6
62	Human \hat{l}_{\pm} -thrombin induces phosphoinositide turnover and Ca2+ movements in cultured human umbilical vein endothelial cells. Thrombosis Research, 1989, 54, 75-87.	0.8	11
63	DMSO-induced changes in the procoagulant and fibrinolytic activity of B16 melanoma cells: Influence on lung colony formation. Clinical and Experimental Metastasis, 1988, 6, 377-385.	1.7	2
64	Interleukin-1 induces c-fos protooncogene expression in cultured human endothelial cells. Biochemical and Biophysical Research Communications, 1988, 152, 1104-1110.	1.0	28
65	Thrombin stimulates arachidonate metabolism in murine tumor cells. International Journal of Cancer, 1987, 39, 367-372.	2.3	5
66	Dissociation between thromboxane generation and metastatic potential in cells from a murine fibrosarcoma. Studies with a selective thromboxane synthase inhibitor. International Journal of Cancer, 1987, 39, 488-491.	2.3	8
67	Functional distinction between serotonin uptake and serotonin-induced shape change receptors in rat platelets. Biochimica Et Biophysica Acta - Biomembranes, 1982, 693, 22-26.	1.4	7
68	Interaction between benzyladenine and white light on excised watermelon cotyledons. Plant Science Letters, 1980, 18, 351-358.	1.9	16
69	Evidence for two classes of responses of watermelon cotyledons to benzyladenine. Plant Science Letters, 1979, 16, 51-57.	1.9	14