Lucy Flesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694525/publications.pdf Version: 2024-02-01

LUCY FLESCH

#	Article	IF	CITATIONS
1	Thank You to Our 2021 Peer Reviewers. Geophysical Research Letters, 2022, 49, .	4.0	Ο
2	Thank You to Our 2020 Peer Reviewers. Geophysical Research Letters, 2021, 48, e2021GL093126.	4.0	0
3	Thank You to Our 2019 Peer Reviewers. Geophysical Research Letters, 2020, 47, e2020GL088048.	4.0	0
4	Thank You to Our 2018 Peer Reviewers. Geophysical Research Letters, 2019, 46, 12608-12636.	4.0	0
5	Impact of Lithospheric Strength Distribution on Indiaâ€Eurasia Deformation From 3â€Ð Geodynamic Models. Journal of Geophysical Research: Solid Earth, 2019, 124, 1084-1105.	3.4	16
6	Limitations on Inferring 3D Architecture and Dynamics From Surface Velocities in the Indiaâ€Eurasia Collision Zone. Geophysical Research Letters, 2018, 45, 1379-1386.	4.0	10
7	Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust. Nature Communications, 2018, 9, 4952.	12.8	36
8	Spatial Scales in Topography and Strain Rate Magnitude in the Western United States. Journal of Geophysical Research: Solid Earth, 2018, 123, 6086-6097.	3.4	2
9	Kinematics and Dynamics of the Pamir, Central Asia: Quantifying the Roles of Continental Subduction in Force Balance. Journal of Geophysical Research: Solid Earth, 2018, 123, 8161-8179.	3.4	5
10	Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 2017, 699, 93-101.	2.2	85
11	Kinematics and dynamics of the Pamir, Central Asia: Quantifying surface deformation and force balance in an intracontinental subduction zone. Journal of Geophysical Research: Solid Earth, 2017, 122, 4741-4762.	3.4	13
12	Surface motions and intraplate continental deformation in Alaska driven by mantle flow. Geophysical Research Letters, 2015, 42, 4350-4358.	4.0	33
13	Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophysical Research Letters, 2015, 42, 5813-5819.	4.0	39
14	Present-day geodynamics of the northern North American Cordillera. Earth and Planetary Science Letters, 2014, 404, 111-123.	4.4	19
15	A review of heterogeneous materials and their implications for relationships between kinematics and dynamics in continents. Tectonics, 2013, 32, 980-992.	2.8	4
16	Evidence of active mantle flow beneath South China. Geophysical Research Letters, 2013, 40, 5137-5141.	4.0	26
17	The relationship between surface kinematics and deformation of the whole lithosphere. Geology, 2012, 40, 711-714.	4.4	24
18	Significant and vertically coherent seismic anisotropy beneath eastern Tibet. Journal of Geophysical Research, 2012, 117, .	3.3	46

LUCY FLESCH

#	Article	IF	CITATIONS
19	Gravitational potential energy and regional stress and strain rate fields for continental plateaus: Examples from the central Andes and Colorado Plateau. Tectonophysics, 2010, 482, 182-192.	2.2	36
20	Contribution of gravitational potential energy differences to the global stress field. Geophysical Journal International, 2009, 179, 787-812.	2.4	69
21	Evidence of longâ€ŧerm weakness on seismogenic faults in western North America from dynamic modeling. Journal of Geophysical Research, 2009, 114, .	3.3	19
22	Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 2008, 36, 363.	4.4	212
23	Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 2007, 35, 895.	4.4	74
24	A possible "window of escape―in the southern Cascadia subduction zone. Geology, 2007, 35, 959.	4.4	3
25	Cenozoic tectonic processes along the southern Alaska convergent margin. Geology, 2007, 35, 1055.	4.4	6
26	The dynamics of western North America: stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions. Geophysical Journal International, 2007, 169, 866-896.	2.4	76
27	Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 2006, 34, 321.	4.4	89
28	Constraining the extent of crust–mantle coupling in central Asia using GPS, geologic, and shear wave splitting data. Earth and Planetary Science Letters, 2005, 238, 248-268.	4.4	226
29	Dynamics of the India-Eurasia collision zone. Journal of Geophysical Research. 2001. 106. 16435-16460.	3.3	267