
James J Fitzgerald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive deep brain stimulation in advanced Parkinson disease. Annals of Neurology, 2013, 74, 449-457.	5.3	1,046
2	Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Medical and Biological Engineering and Computing, 2010, 48, 945-954.	2.8	226
3	Stimulating at the right time: phase-specific deep brain stimulation. Brain, 2017, 140, 132-145.	7.6	213
4	The Neuromodulation Appropriateness Consensus Committee on Best Practices for Dorsal Root Ganglion Stimulation. Neuromodulation, 2019, 22, 1-35.	0.8	108
5	Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurgery, 2016, 92, 454-462.	1.3	95
6	The nature of tremor circuits in parkinsonian and essential tremor. Brain, 2014, 137, 3223-3234.	7.6	90
7	Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks. ELife, 2017, 6, .	6.0	71
8	The Efficacy and Safety of Dorsal Root Ganglion Stimulation as a Treatment for Neuropathic Pain: A Literature Review. Neuromodulation, 2018, 21, 225-233.	0.8	69
9	Use of Immersive Virtual Reality in the Assessment and Treatment of Alzheimer's Disease: A Systematic Review. Journal of Alzheimer's Disease, 2020, 75, 23-43.	2.6	67
10	Long Micro-Channel Electrode Arrays: A Novel Type of Regenerative Peripheral Nerve Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17, 454-460.	4.9	65
11	Microchannels as Axonal Amplifiers. IEEE Transactions on Biomedical Engineering, 2008, 55, 1136-1146.	4.2	61
12	Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sensors and Actuators A: Physical, 2008, 147, 456-463.	4.1	53
13	A regenerative microchannel neural interface for recording from and stimulating peripheral axons <i>in vivo</i> . Journal of Neural Engineering, 2012, 9, 016010.	3.5	52
14	Histological determinants of survival in completely resected T1-2N1M0 nonsmall cell cancer of the lung. Annals of Thoracic Surgery, 2004, 77, 1173-1178.	1.3	41
15	Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition. ELife, 2017, 6, .	6.0	41
16	Microchannel Electrodes for Recording and Stimulation:In VitroEvaluation. IEEE Transactions on Biomedical Engineering, 2009, 56, 1524-1534.	4.2	39
17	Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism. Journal of Neuroscience, 2015, 35, 5941-5949.	3.6	39
18	Pallidal Deep Brain Stimulation Improves Higher Control of the Oculomotor System in Parkinson's Disease. Journal of Neuroscience, 2015, 35, 13043-13052.	3.6	30

James J Fitzgerald

#	Article	IF	CITATIONS
19	Quantifying Motor Impairment in Movement Disorders. Frontiers in Neuroscience, 2018, 12, 202.	2.8	30
20	The effect of levodopa on saccades – Oxford Quantification in Parkinsonism study. Parkinsonism and Related Disorders, 2019, 68, 49-56.	2.2	27
21	Deep Brain Stimulation: Eye Movements Reveal Anomalous Effects of Electrode Placement and Stimulation. PLoS ONE, 2012, 7, e32830.	2.5	25
22	Deep Brain Stimulation Abolishes Slowing of Reactions to Unlikely Stimuli. Journal of Neuroscience, 2014, 34, 10844-10852.	3.6	22
23	Burst Occipital Nerve Stimulation for Chronic Migraine and Chronic Cluster Headache. Neuromodulation, 2019, 22, 638-644.	0.8	22
24	Invasive Electrical Neuromodulation for the Treatment of Painful Diabetic Neuropathy: Systematic Review and Meta-Analysis. Neuromodulation, 2021, 24, 13-21.	0.8	22
25	Successful treatment of pelvic girdle pain with dorsal root ganglion stimulation. British Journal of Neurosurgery, 2016, 30, 685-686.	0.8	20
26	Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation. Frontiers in Behavioral Neuroscience, 2015, 9, 167.	2.0	18
27	Suppression of scarring in peripheral nerve implants by drug elution. Journal of Neural Engineering, 2016, 13, 026006.	3.5	17
28	Dorsal Root Ganglion Stimulation Modulates Cortical Gamma Activity in the Cognitive Dimension of Chronic Pain. Brain Sciences, 2020, 10, 95.	2.3	15
29	A Clinical Feasibility Study of Spinal Evoked Compound Action Potential Estimation Methods. Neuromodulation, 2022, 25, 75-84.	0.8	15
30	Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function. Frontiers in Neurology, 2018, 9, 444.	2.4	13
31	Burst or Conventional Peripheral Nerve Field Stimulation for Treatment of Neuropathic Facial Pain. Neuromodulation, 2019, 22, 645-652.	0.8	13
32	Eye movements and deep brain stimulation. Current Opinion in Neurology, 2016, 29, 69-73.	3.6	12
33	Oscillatory neural representations in the sensory thalamus predict neuropathic pain relief by deep brain stimulation. Neurobiology of Disease, 2018, 109, 117-126.	4.4	12
34	The impact of the COVID-19 pandemic on patients awaiting spinal cord stimulation surgery in the United Kingdom: a multi-centre patient survey. British Journal of Pain, 2021, 15, 282-290.	1.5	11
35	Dynamic changes in rhythmic and arrhythmic neural signatures in the subthalamic nucleus induced by anaesthesia and tracheal intubation. British Journal of Anaesthesia, 2020, 125, 67-76.	3.4	11
36	Pallido-putaminal connectivity predicts outcomes of deep brain stimulation for cervical dystonia. Brain, 2021, 144, 3589-3596.	7.6	11

James J Fitzgerald

#	Article	IF	CITATIONS
37	Nonâ€invasive phrenic nerve stimulation to avoid ventilatorâ€induced diaphragm dysfunction in critical care. Artificial Organs, 2022, 46, 1988-1997.	1.9	10
38	Beta oscillations and urinary voiding in Parkinson disease. Neurology, 2018, 90, e1530-e1534.	1.1	9
39	Recording with microchannel electrodes in a noisy environment. , 2008, 2008, 34-7.		8
40	Paired Acute Invasive/Non-invasive Stimulation (PAINS) study: A phase I/II randomized, sham-controlled crossover trial in chronic neuropathic pain. Brain Stimulation, 2021, 14, 1576-1585.	1.6	7
41	The Importance of the Location of Dorsal Root Ganglion Stimulator Electrodes Within the Nerve Root Exit Foramen. Neuromodulation, 2020, 23, 245-251.	0.8	6
42	Oculomotor effects of medical and surgical treatments of Parkinson's disease. Progress in Brain Research, 2019, 249, 297-305.	1.4	5
43	Deep Brain Stimulation and Levodopa Affect Gait Variability in Parkinson Disease Differently. Neuromodulation, 2023, 26, 382-393.	0.8	5
44	Contributions of synaptic and astrocyte physiology to the anaesthetised encephalogram revealed using a computational model. British Journal of Anaesthesia, 2021, 126, 985-995.	3.4	3
45	Using Saccadometry with Deep Brain Stimulation to Study Normal and Pathological Brain Function. Journal of Visualized Experiments, 2016, , .	0.3	2
46	Supraspinal Effects of Dorsal Root Ganglion Stimulation in Chronic Pain Patients. Neuromodulation, 2021, 24, 646-654.	0.8	2
47	The Spiral Peripheral Nerve Interface: Design, Fabrication and Performance. IFMBE Proceedings, 2011, , 1338-1341.	0.3	0
48	The Influence of Deep Brain Stimulation on Eye Movements. Contemporary Clinical Neuroscience, 2019, , 377-387.	0.3	0