Hiroyasu Yamaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694382/publications.pdf

Version: 2024-02-01

168 papers	11,721 citations	50 h-index	2	105 g-index
187 all docs	187 docs citations	187 times ranked		9449 citing authors

#	Article	IF	CITATIONS
1	Redox-responsive self-healing materials formed from host–guest polymers. Nature Communications, 2011, 2, 511.	12.8	1,207
2	Polymeric Rotaxanes. Chemical Reviews, 2009, 109, 5974-6023.	47.7	837
3	Cyclodextrin-based supramolecular polymers. Chemical Society Reviews, 2009, 38, 875.	38.1	768
4	Macroscopic self-assembly through molecular recognition. Nature Chemistry, 2011, 3, 34-37.	13.6	710
5	Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Communications, 2012, 3, 1270.	12.8	622
6	Preorganized Hydrogel: Selfâ€Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guestâ€Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups. Advanced Materials, 2013, 25, 2849-2853.	21.0	540
7	Photoswitchable gel assembly based on molecular recognition. Nature Communications, 2012, 3, 603.	12.8	412
8	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie - International Edition, 2010, 49, 7461-7464.	13.8	407
9	Chemically-Responsive Solâ~Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hydrogel Made by Hybrids of SWNTs and Cyclodextrins. Journal of the American Chemical Society, 2007, 129, 4878-4879.	13.7	246
10	Chiral Supramolecular Polymers Formed by Hostâ^'Guest Interactions. Journal of the American Chemical Society, 2005, 127, 2984-2989.	13.7	196
11	A Chemical-Responsive Supramolecular Hydrogel from Modified Cyclodextrins. Angewandte Chemie - International Edition, 2007, 46, 5144-5147.	13.8	170
12	Preparation of Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules: Control of Structure by Linker Flexibility. Macromolecules, 2005, 38, 5897-5904.	4.8	162
13	Daisy Chain Necklace:Â Tri[2]rotaxane Containing Cyclodextrins. Journal of the American Chemical Society, 2000, 122, 9876-9877.	13.7	160
14	Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. Journal of the American Chemical Society, 2018, 140, 17308-17315.	13.7	156
15	External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer. Journal of the American Chemical Society, 2007, 129, 12630-12631.	13.7	148
16	Thermal and Photochemical Switching of Conformation of Poly(ethylene glycol)-Substituted Cyclodextrin with an Azobenzene Group at the Chain End. Journal of the American Chemical Society, 2007, 129, 6396-6397.	13.7	146
17	A metal–ion-responsive adhesive material via switching of molecular recognition properties. Nature Communications, 2014, 5, 4622.	12.8	140
18	Complex Formation and Gelation between Copolymers Containing Pendant Azobenzene Groups and Cyclodextrin Polymers. Chemistry Letters, 2004, 33, 890-891.	1.3	124

#	Article	IF	CITATIONS
19	Supramolecular Polymers Formed from β-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers. Macromolecules, 2005, 38, 3724-3730.	4.8	122
20	Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds. CheM, 2016, 1, 766-775.	11.7	121
21	Supramolecular Hemoprotein Linear Assembly by Successive Interprotein Hemeâ'Heme Pocket Interactions. Journal of the American Chemical Society, 2007, 129, 10326-10327.	13.7	115
22	Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chemical Communications, 2020, 56, 4381-4395.	4.1	107
23	Switching of macroscopic molecular recognition selectivity using a mixed solvent system. Nature Communications, 2012, 3, 831.	12.8	104
24	Kinetic Control of Threading of Cyclodextrins onto Axle Molecules. Journal of the American Chemical Society, 2005, 127, 12186-12187.	13.7	100
25	A [2]Rotaxane Capped by a Cyclodextrin and a Guest:Â Formation of Supramolecular [2]Rotaxane Polymer. Journal of the American Chemical Society, 2005, 127, 2034-2035.	13.7	100
26	Multifunctional Stimuli-Responsive Supramolecular Materials with Stretching, Coloring, and Self-Healing Properties Functionalized via Host–Guest Interactions. Macromolecules, 2017, 50, 4144-4150.	4.8	96
27	Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angewandte Chemie, 2010, 122, 7623-7626.	2.0	90
28	Social Self-Sorting: Alternating Supramolecular Oligomer Consisting of Isomers. Journal of the American Chemical Society, 2009, 131, 12339-12343.	13.7	86
29	Self-Healing Alkyl Acrylate-Based Supramolecular Elastomers Cross-Linked via Host–Guest Interactions. Macromolecules, 2019, 52, 2659-2668.	4.8	83
30	pH- and Sugar-Responsive Gel Assemblies Based on Boronate–Catechol Interactions. ACS Macro Letters, 2014, 3, 337-340.	4.8	82
31	Adhesion between Semihard Polymer Materials Containing Cyclodextrin and Adamantane Based on Host–Guest Interactions. Macromolecules, 2015, 48, 732-738.	4.8	81
32	Switching between Supramolecular Dimer and Nonthreaded Supramolecular Self-Assembly of Stilbene Amide-α-Cyclodextrin by Photoirradiation. Journal of the American Chemical Society, 2008, 130, 5024-5025.	13.7	80
33	Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules. Macromolecules, 2011, 44, 2395-2399.	4.8	76
34	Artificial Molecular Clamp: A Novel Device for Synthetic Polymerases. Angewandte Chemie - International Edition, 2011, 50, 7524-7528.	13.8	75
35	Asymmetric hydrogenation with antibody-achiral rhodium complex. Organic and Biomolecular Chemistry, 2006, 4, 3571.	2.8	74
36	Supramolecular Materials Cross-Linked by Host–Guest Inclusion Complexes: The Effect of Side Chain Molecules on Mechanical Properties. Macromolecules, 2017, 50, 3254-3261.	4.8	72

#	Article	IF	Citations
37	Selfâ€Assembly of One―and Twoâ€Dimensional Hemoprotein Systems by Polymerization through Heme–Heme Pocket Interactions. Angewandte Chemie - International Edition, 2009, 48, 1271-1274.	13.8	66
38	A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules, 2018, 51, 4688-4693.	4.8	60
39	Ring-Opening Polymerization of Cyclic Esters by Cyclodextrins. Accounts of Chemical Research, 2008, 41, 1143-1152.	15.6	58
40	An Artificial Molecular Chaperone:  Poly- <i>pseudo</i> rotaxane with an Extensible Axle. Journal of the American Chemical Society, 2007, 129, 14452-14457.	13.7	57
41	Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition. ACS Macro Letters, 2012, 1, 1083-1085.	4.8	56
42	Cyclodextrinâ€Based Rotaxanes: from Rotaxanes to Polyrotaxanes and Further to Functional Materials. European Journal of Organic Chemistry, 2019, 2019, 3344-3357.	2.4	56
43	Preparation and Properties of Rotaxanes Formed by Dimethyl-β-cyclodextrin and Oligo(thiophene)s with β-Cyclodextrin Stoppers. Journal of Organic Chemistry, 2007, 72, 459-465.	3.2	55
44	A Molecular Reel: Shuttling of a Rotor by Tumbling of a Macrocycle. Journal of Organic Chemistry, 2010, 75, 1040-1046.	3.2	55
45	Face-Selective [2]- and [3]Rotaxanes: Kinetic Control of the Threading Direction of Cyclodextrins. Chemistry - A European Journal, 2007, 13, 7091-7098.	3.3	54
46	Construction of Chemicalâ€Responsive Supramolecular Hydrogels from Guestâ€Modified Cyclodextrins. Chemistry - an Asian Journal, 2008, 3, 687-695.	3.3	54
47	Movable Cross-Linked Polymeric Materials from Bulk Polymerization of Reactive Polyrotaxane Cross-Linker with Acrylate Monomers. Macromolecules, 2017, 50, 5695-5700.	4.8	54
48	Extremely Rapid Selfâ€Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host–Guest Interactions. Advanced Materials, 2020, 32, e2002008.	21.0	54
49	Reversible self-assembly of gels through metal-ligand interactions. Scientific Reports, 2013, 3, .	3.3	53
50	Polymerization of Lactones Initiated by Cyclodextrins:Â Effects of Cyclodextrins on the Initiation and Propagation Reactions. Macromolecules, 2007, 40, 3154-3158.	4.8	52
51	Switching from <i>altro</i> -α-Cyclodextrin Dimer to <i>pseudo</i> [1]Rotaxane Dimer through Tumbling. Organic Letters, 2010, 12, 1284-1286.	4.6	52
52	A chemically-controlled supramolecular protein polymer formed by a myoglobin-based self-assembly system. Chemical Science, 2011, 2, 1033.	7.4	52
53	Cyclodextrin-grafted poly(phenylene ethynylene) with chemically-responsive properties. Chemical Communications, 2006, , 3702.	4.1	50
54	Self-Threading of a Poly(ethylene glycol) Chain in a Cyclodextrin-Ring:Â Control of the Exchange Dynamics by Chain Length. Journal of the American Chemical Society, 2006, 128, 8994-8995.	13.7	46

#	Article	IF	CITATIONS
55	Molecular Puzzle Ring: <i>pseudo</i> [1]Rotaxane from a Flexible Cyclodextrin Derivative. Journal of the American Chemical Society, 2008, 130, 17062-17069.	13.7	45
56	Biofunctional hydrogels based on host–guest interactions. Polymer Journal, 2020, 52, 839-859.	2.7	45
57	Peroxidation of Pyrogallol by Antibodyâ^'Metalloporphyrin Complexes. Inorganic Chemistry, 1997, 36, 6099-6102.	4.0	44
58	Thermostable peroxidase activity with a recombinant antibody L chain-porphyrin Fe(III) complex. FEBS Letters, 1995, 375, 273-276.	2.8	41
59	Contraction of Supramolecular Double-Threaded Dimer Formed by α-Cyclodextrin with a Long Alkyl Chain. Organic Letters, 2007, 9, 1053-1055.	4.6	41
60	Macroscopic Observations of Molecular Recognition: Discrimination of the Substituted Position on the Naphthyl Group by Polyacrylamide Gel Modified with \hat{l}^2 -Cyclodextrin. Langmuir, 2011, 27, 13790-13795.	3. 5	41
61	Peroxidase Activity of Cationic Metalloporphyrin-Antibody Complexes. Chemistry - A European Journal, 2004, 10, 6179-6186.	3.3	40
62	Branched supramolecular polymers formed by bifunctional cyclodextrin derivatives. Tetrahedron, 2008, 64, 8355-8361.	1.9	40
63	Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester. Macromolecules, 2013, 46, 1939-1947.	4.8	40
64	Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly. Chemical Communications, 2008, , 456-458.	4.1	38
65	Supramolecular Assembly of Porphyrins and Monoclonal Antibodies. Inorganic Chemistry, 1995, 34, 1070-1076.	4.0	35
66	Self-Healing Thermoplastic Polyurethane Linked via Host-Guest Interactions. Polymers, 2020, 12, 1393.	4.5	35
67	Mechanical Properties of Supramolecular Polymeric Materials Formed by Cyclodextrins as Host Molecules and Cationic Alkyl Guest Molecules on the Polymer Side Chain. Macromolecules, 2018, 51, 6318-6326.	4.8	34
68	Supramolecular Elastomers with Movable Cross-Linkers Showing High Fracture Energy Based on Stress Dispersion. Macromolecules, 2019, 52, 6953-6962.	4.8	34
69	Control of Photoinduced Electron Transfer from Zincâ€Porphyrin to Methyl Viologen by Supramolecular Formation between Monoclonal Antibody and Zincâ€Porphyrin. Photochemistry and Photobiology, 1999, 70, 298-302.	2.5	33
70	Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Materials, 2022, 14, .	7.9	33
71	Supramolecular Formation of Antibodies with Viologen Dimers:Â Utilization for Amplification of Methyl Viologen Detection Signals in Surface Plasmon Resonance Sensor. Biomacromolecules, 2002, 3, 1163-1169.	5.4	32
72	Relative Rotational Motion between α-Cyclodextrin Derivatives and a Stiff Axle Molecule. Journal of Organic Chemistry, 2008, 73, 2496-2502.	3.2	31

#	Article	lF	Citations
73	Singleâ€Molecule Imaging of Rotaxanes Immobilized on Glass Substrates: Observation of Rotary Movement. Angewandte Chemie - International Edition, 2008, 47, 6077-6079.	13.8	30
74	Supramolecular hydrogels formed from poly(viologen) cross-linked with cyclodextrin dimers and their physical properties. Beilstein Journal of Organic Chemistry, 2012, 8, 1594-1600.	2.2	30
75	Redox-responsive supramolecular polymeric networks having double-threaded inclusion complexes. Chemical Science, 2020, 11, 4322-4331.	7.4	30
76	Selection between Pinching-Type and Supramolecular Polymer-Type Complexes by α-Cyclodextrinâ^β-Cyclodextrin Hetero-Dimer and Hetero-Cinnamamide Guest Dimers. Journal of Organic Chemistry, 2006, 71, 4878-4883.	3.2	28
77	Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polymer Chemistry, 2019, 10, 4519-4523.	3.9	28
78	Supramolecular Polymers and Materials Formed by Host-Guest Interactions. Bulletin of the Chemical Society of Japan, 2021, 94, 2381-2389.	3.2	28
79	Face selective translation of a cyclodextrin ring along an axle. Chemical Communications, 2009, , 5515.	4.1	27
80	Cyclodextrin-Based Molecular Machines. Topics in Current Chemistry, 2014, 354, 71-110.	4.0	27
81	Citric Acid-Modified Cellulose-Based Tough and Self-Healable Composite Formed by Two Kinds of Noncovalent Bonding. ACS Applied Polymer Materials, 2020, 2, 2274-2283.	4.4	27
82	Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules, 2021, 54, 8067-8076.	4.8	27
83	Self-Threading and Dethreading Dynamics of Poly(ethylene glycol)-Substituted Cyclodextrins with Different Chain Lengths. Macromolecules, 2007, 40, 3256-3262.	4.8	26
84	Photoresponsive Formation of Pseudo[2]rotaxane with Cyclodextrin Derivatives. Organic Letters, 2011, 13, 4356-4359.	4.6	26
85	Photochemically Controlled Supramolecular Curdlan/Singleâ€Walled Carbon Nanotube Composite Gel: Preparation of Molecular Distaff by Cyclodextrin Modified Curdlan and Phase Transition Control. European Journal of Organic Chemistry, 2011, 2011, 2801-2806.	2.4	25
86	Rotaxanes with unidirectional cyclodextrin array. Journal of Physics Condensed Matter, 2006, 18, S1809-S1816.	1.8	24
87	Selective Photoinduced Energy Transfer from a Thiophene Rotaxane to Acceptor. Organic Letters, 2011, 13, 672-675.	4.6	24
88	Emission properties of cyclodextrin dimers linked with perylene diimide—effect of cyclodextrin tumbling. Polymer Journal, 2012, 44, 278-285.	2.7	24
89	Ring-Opening Metathesis Polymerization by a Ru Phosphine Derivative of Cyclodextrin in Water. ACS Macro Letters, 2013, 2, 384-387.	4.8	24
90	Visible chiral discrimination via macroscopic selective assembly. Communications Chemistry, 2018, 1, .	4.5	23

#	Article	IF	CITATIONS
91	Preparation of Supramolecular Ionic Liquid Gels Based on Host–Guest Interactions and Their Swelling and Ionic Conductive Properties. Macromolecules, 2019, 52, 2932-2938.	4.8	23
92	Complex Formation of Cyclodextrins with Various Thiophenes and their Polymerization in Water: Preparation of Poly-pseudo-rotaxanes containing Poly(thiophene)s. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 45-53.	1.6	22
93	Preparation of cyclodextrin-based porous polymeric membrane by bulk polymerization of ethyl acrylate in the presence of cyclodextrin. Polymer, 2019, 177, 208-213.	3.8	22
94	Photoinduced Hydrogen-Evolution System with an Antibody–Porphyrin Complex as a Photosensitizer. Bulletin of the Chemical Society of Japan, 2009, 82, 1341-1346.	3.2	20
95	Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. Polymer, 2020, 196, 122465.	3.8	20
96	Photoinduced Electron Transfer from a Porphyrin to an Electron Acceptor in an Antibody-Combining Site. Angewandte Chemie - International Edition, 2000, 39, 3829-3831.	13.8	19
97	Competitive photoinduced electron transfer by the complex formation of porphyrin with cyclodextrin bearing viologen. Chemical Communications, 2006, , 4212.	4.1	19
98	Switching of polymerization activity of cinnamoyl- \hat{l} ±-cyclodextrin. Organic and Biomolecular Chemistry, 2009, 7, 1646.	2.8	19
99	Design and mechanical properties of supramolecular polymeric materials based on host–guest interactions: the relation between relaxation time and fracture energy. Polymer Chemistry, 2020, 11, 6811-6820.	3.9	19
100	Spectroscopic study on the interaction of cyclodextrins with naphthyl groups attached to poly(acrylamide) backbone. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 13-19.	3.9	18
101	Nanospheres with Polymerization Ability Coated by Polyrotaxane. Journal of Organic Chemistry, 2009, 74, 1858-1863.	3.2	18
102	Supramolecular Polymers from a Cyclodextrin Dimer and Ditopic Guest Molecules. Chemistry Letters, 2005, 34, 320-321.	1.3	15
103	Toward a translational molecular ratchet: face-selective translation coincident with deuteration in a pseudo-rotaxane. Scientific Reports, 2018, 8, 8950.	3.3	15
104	Antibody Dendrimers. Topics in Current Chemistry, 2003, 228, 237-258.	4.0	14
105	Synthesis of a Water-soluble Iridium(III) Complex with pH and Metal Cation Sensitive Photoluminescence. Chemistry Letters, 2006, 35, 720-721.	1.3	14
106	Supramolecular Biocomposite Hydrogels Formed by Cellulose and Host–Guest Polymers Assisted by Calcium Ion Complexes. Biomacromolecules, 2020, 21, 3936-3944.	5.4	14
107	Physical and Adhesion Properties of Supramolecular Hydrogels Cross-linked by Movable Cross-linking Molecule and Host-guest Interactions. Chemistry Letters, 2018, 47, 1387-1390.	1.3	13

Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene) Tj ETQq0 0 0 rgBT /2 verlock $\frac{10}{13}$ Tf 50 62

7

108

#	Article	IF	CITATIONS
109	Cellulose Nanofiber Composite Polymeric Materials with Reversible and Movable Cross-links and Evaluation of their Mechanical Properties. ACS Applied Polymer Materials, 2022, 4, 403-412.	4.4	13
110	Dendritic Antibody Supramolecules: Combination of IgM and IgG. Chemistry Letters, 2003, 32, 18-19.	1.3	12
111	Supramolecular Polymers Formed by Bifunctional Cyclodextrin Derivatives. Chemistry Letters, 2007, 36, 828-829.	1.3	12
112	A palladium-catalyst stabilized in the chiral environment of a monoclonal antibody in water. Chemical Communications, 2020, 56, 1605-1607.	4.1	12
113	Bulk Copolymerization of Host–Guest Monomers with Liquid-Type Acrylamide Monomers for Supramolecular Materials Applications. ACS Applied Polymer Materials, 2020, 2, 1553-1560.	4.4	12
114	Direct Observation of DNA Catenanes by Atomic Force Microscopy. Chemistry Letters, 2000, 29, 384-385.	1.3	11
115	Amplification of Detection Signals for Methyl Viologen by Using Supramolecular Formation of Antibody with Viologen Dimer in Surface Plasmon Resonance Sensor. Chemistry Letters, 2002, 31, 382-383.	1.3	11
116	Stereoselective Complex Formation between Polybutadiene and Cyclodextrins in Bulk. Macromolecular Rapid Communications, 2008, 29, 910-913.	3.9	11
117	Photocontrolled Size Changes of Doubly-threaded Dimer Based on an α-Cyclodextrin Derivative with Two Recognition Sites. Chemistry Letters, 2010, 39, 242-243.	1.3	11
118	Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds. Soft Matter, 2022, 18, 5027-5036.	2.7	11
119	Functionalized Antibodies as Biosensing Materials and Catalysts. Chemistry Letters, 2008, 37, 1184-1189.	1.3	10
120	Direct Adhesion of Dissimilar Materials Using Sonogashira Cross-coupling Reaction. Chemistry Letters, 2016, 45, 1250-1252.	1.3	10
121	Adhesion of Dissimilar Materials through Host-Guest Interactions and Its Re-adhesion Properties. Chemistry Letters, 2018, 47, 1255-1257.	1.3	10
122	Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. European Polymer Journal, 2020, 134, 109806.	5.4	10
123	Behavior of supramolecular cross-links formed by host-guest interactions in hydrogels responding to water contents., 2022, 1, 100001.		10
124	Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Materials, 2022, 14, .	7.9	10
125	Enhancement of Photoinduced Electron Transfer from Porphyrin to Methyl Viologen by Binding of an Antibody for Porphyrin. Chemistry Letters, 2006, 35, 1126-1127.	1.3	9
126	Polymerization of Lactones and Lactides Initiated by Cyclodextrins. Kobunshi Ronbunshu, 2007, 64, 607-616.	0.2	9

#	Article	IF	CITATIONS
127	Supramolecular complex formation of polysulfide polymers and cyclodextrins. Chemical Communications, 2020, 56, 13619-13622.	4.1	9
128	Structural Characterization of Mouse Monoclonal Antibody 13-1 against a Porphyrin Derivative: Identification of a Disulfide Bond in CDR-H3 of Mab13-1. Biochemical and Biophysical Research Communications, 1997, 240, 566-572.	2.1	8
129	pH Responsive [2]Rotaxanes with 6-Modified-α-Cyclodextrins. Chemistry Letters, 2011, 40, 758-759.	1.3	8
130	Manual control of catalytic reactions: Reactions by an apoenzyme gel and a cofactor gel. Scientific Reports, 2015, 5, 16254.	3.3	8
131	Mechanical and self-recovery properties of supramolecular ionic liquid elastomers based on host–guest interactions and correlation with ionic liquid content. RSC Advances, 2019, 9, 22295-22301.	3.6	8
132	Control of microenvironment around enzymes by hydrogels. Chemical Communications, 2020, 56, 6723-6726.	4.1	8
133	Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Molecular Systems Design and Engineering, 2022, 7, 733-745.	3.4	8
134	Imaging Antibody Molecules at Room Temperature by Contact Mode Atomic Force Microscope. Chemistry Letters, 1997, 26, 1141-1142.	1.3	7
135	Preparation and properties of antibody polymers. Reactive and Functional Polymers, 1998, 37, 245-250.	4.1	7
136	Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent. Beilstein Journal of Organic Chemistry, 2016, 12, 2495-2502.	2.2	7
137	Reinforced polystyrene through host-guest interactions using cyclodextrin as an additive. European Polymer Journal, 2020, 134, 109807.	5.4	7
138	Material Adhesion through Direct Covalent Bond Formation Assisted by Noncovalent Interactions. ACS Applied Polymer Materials, 2021, 3, 2189-2196.	4.4	7
139	Supramolecular assemblies of oligothiophene derivatives bearing \hat{I}^2 -cyclodextrin. Synthetic Metals, 2009, 159, 977-981.	3.9	6
140	Mechanical properties of supramolecular polymeric materials cross-linked by donor–acceptor interactions. Chemical Communications, 2019, 55, 3809-3812.	4.1	6
141	Visualized Polymers. Patterns Formed by Polymeric Systems. I. Direct Observation of Supramolecular Structures of Porphyrin Dimer-Antibody Complexes by Atomic Force Microscopy Kobunshi Ronbunshu, 1999, 56, 660-666.	0.2	5
142	Stellate Macroscopic Crystals from Cationic and Anionic Porphyrins. Chemistry Letters, 2001, 30, 778-779.	1.3	5
143	Direct Chiral Separation of Binaphthyl Derivatives Using Atroposelective Antibodies. ChemistrySelect, 2017, 2, 2622-2625.	1.5	5
144	Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polymer Journal, 2022, 54, 1213-1223.	2.7	5

#	Article	IF	Citations
145	Direct Observation of Supramolecular Structures of Biorelated Materials by Atomic Force Microscopy. Springer Series in Materials Science, 2004, , 258-272.	0.6	4
146	Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. Chemistry Letters, 2020, 49, 1490-1493.	1.3	4
147	Supramolecular Polysulfide Polymers with Metalâ€Ligand Interactions. ChemistrySelect, 2022, 7, .	1.5	4
148	Photocontrollable Supramolecular Materials Formed by Cyclodextrins and Azobenzene Polymers. Kobunshi Ronbunshu, 2011, 68, 669-678.	0.2	3
149	A pseudo-rotaxane of \hat{l} ±-cyclodextrin and a two-station axis molecule consisting of pyridinium and decamethylene moieties, and its deuteration in deuterium oxide. Tetrahedron, 2017, 73, 4988-4993.	1.9	3
150	Visualization of Chiral Binaphthyl Recognition by Atroposelective Antibodies with Thermoresponsive Polymers. Chemistry Letters, 2017, 46, 1173-1175.	1.3	3
151	Formation of Inclusion Complexes of Poly(hexafluoropropyl ether)s with Cyclodextrins. Chemistry Letters, 2018, 47, 322-325.	1.3	3
152	Atroposelective antibodies as a designed protein scaffold for artificial metalloenzymes. Scientific Reports, 2019, 9, 13551.	3.3	3
153	Preparation and activity of ruthenium catalyst based on \hat{l}^2 -cyclodextrin for ring-opening metathesis polymerization. Tetrahedron Letters, 2021, 63, 152712.	1.4	3
154	Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone. Polymers, 2022, 14, 1191.	4.5	3
155	<title>Supramolecular formation of porphyrins and antibodies</title> ., 1999, , .		2
156	Supramolecular Spherical \hat{l}^2 -Cyclodextrin32-dendrimer: Inclusion Properties and Supramolecular Structure. Chemistry Letters, 2011, 40, 742-743.	1.3	2
157	Development of Atroposelective Antibodies by Immunization with a Racemic Mixture of Binaphthyl Derivatives. Bulletin of the Chemical Society of Japan, 2019, 92, 1462-1466.	3.2	2
158	X-ray crystal structures of α-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–Îμ-caprolactone, and β-cyclodextrin–Îμ-caprolactam inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 93-99.	1.6	2
159	The macroscopic shape of assemblies formed from microparticles based on host–guest interaction dependent on the guest content. Scientific Reports, 2021, 11, 6320.	3.3	2
160	<title>Direct observation of supramolecular structures of biorelated materials by atomic force microscopy</title> ., 2000, , .		1
161	Development and Characterization of a Monoclonal Antibody against Triacetone Triperoxide. Bulletin of the Chemical Society of Japan, 2013, 86, 198-202.	3.2	1
162	Photoinduced Electron Transfer from a Porphyrin to an Electron Acceptor in an Antibody-Combining Site., 2000, 39, 3829.		1

#	Article	IF	CITATIONS
163	Amplification Effects on Detection Signals for Target Molecules by Antibody Supramolecules. Kobunshi Ronbunshu, 2004, 61, 533-540.	0.2	o
164	Formation of Chiral Supramolecular Polymer Based on Modified Cyclodextrin by Host-Guest Interactions. Kobunshi Ronbunshu, 2006, 63, 306-314.	0.2	0
165	Formation of Redox-Responsive Supramolecular Polymeric Materials Based on Host-Guest Interaction at Polymer Side Chain. Kobunshi Ronbunshu, 2015, 72, 573-581.	0.2	O
166	Adhesion Using the Covalent Bond Formation Reaction at the Soft Material Interface. Kobunshi Ronbunshu, 2015, 72, 590-596.	0.2	0
167	Polyrotaxanes: Synthesis, Structure, and Chemical Properties. , 2014, , 1-7.		0
168	Sensing and Catalytic Systems with Monoclonal Antibodies . Journal of the Society of Materials Engineering for Resources of Japan, 2018, 29, 1-6.	0.2	0