
Qinghua Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Advanced Functional Materials, 2015, 25, 6885-6892.	7.8	898
2	Macroscopic 3D Porous Graphitic Carbon Nitride Monolith for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 4634-4639.	11.1	567
3	Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.	5.4	560
4	A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale, 2014, 6, 13831-13837.	2.8	434
5	Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy and Environmental Science, 2017, 10, 370-376.	15.6	395
6	Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today, 2019, 25, 99-121.	6.2	274
7	Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review. Environment International, 2020, 134, 105298.	4.8	241
8	Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics, 2012, 14, 15657.	1.3	213
9	Selfâ€Assemble and In Situ Formation of Ni _{1â^'} <i>_x<i>E<i>_x</i>PS₃ Nanomosaicâ€Decorated MXene Hybrids for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1801127.</i></i>	10.2	204
10	Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. Journal of Materials Chemistry A, 2020, 8, 7508-7535.	5.2	201
11	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	7.8	172
12	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	7.3	171
13	Ti ₃ C ₂ T _x MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. Journal of Materials Chemistry A, 2020, 8, 5171-5185.	5.2	168
14	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
15	In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. Journal of Hazardous Materials, 2021, 401, 123355.	6.5	157
16	Graphitic Carbon Nitride Induced Microâ€Electric Field for Dendriteâ€Free Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1803186.	10.2	147
17	A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. Journal of Power Sources, 2015, 282, 174-178.	4.0	144
18	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	5.2	140

#	Article	IF	CITATIONS
19	Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chemical Engineering Journal, 2021, 405, 126951.	6.6	139
20	Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm, 2012, 14, 2966.	1.3	132
21	Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 2018, 47, 257-265.	8.2	122
22	Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 2019, 11, 32579-32598.	4.0	120
23	Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 18400-18405.	5.2	107
24	nâ€Type SnSe ₂ Orientedâ€Nanoplateâ€Based Pellets for High Thermoelectric Performance. Advanced Energy Materials, 2018, 8, 1702167.	10.2	103
25	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	6.6	103
26	High Thermoelectric Performance in Polycrystalline SnSe Via Dualâ€Doping with Ag/Na and Nanostructuring With Ag ₈ SnSe ₆ . Advanced Energy Materials, 2019, 9, 1803072.	10.2	98
27	Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Research, 2018, 11, 3480-3489.	5.8	97
28	Synergy of Nb Doping and Surface Alloy Enhanced on Water–Alkali Electrocatalytic Hydrogen Generation Performance in Tiâ€Based MXene. Advanced Science, 2019, 6, 1900116.	5.6	97
29	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	5.8	95
30	Effects of graphene oxide on the development of offspring mice in lactation period. Biomaterials, 2015, 40, 23-31.	5.7	90
31	General and Scalable Solid‣tate Synthesis of 2D MPS ₃ (M = Fe, Co, Ni) Nanosheets and Tuning Their Li/Na Storage Properties. Small Methods, 2017, 1, 1700304.	4.6	90
32	Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochimica Acta, 2015, 182, 908-916.	2.6	86
33	Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4. Journal of Hazardous Materials, 2022, 424, 127177.	6.5	85
34	Constructing a Highâ€ s trength Solid Electrolyte Layer by In Vivo Alloying with Aluminum for an Ultrahighâ€Rate Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 1907343.	7.8	83
35	The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodiumâ€ion Capacitors. Advanced Energy Materials, 2018, 8, 1702395.	10.2	75
36	Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review. Journal of Hazardous Materials, 2022, 424, 127721.	6.5	72

#	Article	IF	CITATIONS
37	High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10, 775-787.	3.8	71
38	Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon, 2015, 94, 342-348.	5.4	65
39	Layered Trichalcogenidophosphate: A New Catalyst Family for Water Splitting. Nano-Micro Letters, 2018, 10, 67.	14.4	65
40	A Non-Woven Network of Porous Nitrogen-doping Carbon Nanofibers as a Binder-free Electrode for Supercapacitors. Electrochimica Acta, 2017, 230, 445-453.	2.6	63
41	Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. Journal of Electroanalytical Chemistry, 2015, 739, 84-88.	1.9	62
42	Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives. Journal of Hazardous Materials, 2022, 424, 127612.	6.5	62
43	Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 33779-33784.	4.0	61
44	Solvationâ€Involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. Advanced Materials, 2020, 32, e1904562.	11.1	61
45	Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Science China Materials, 2017, 60, 109-118.	3.5	60
46	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	7.8	57
47	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light. Small, 2017, 13, 1603182.	5.2	55
48	Recent advances in printable secondary batteries. Journal of Materials Chemistry A, 2017, 5, 22442-22458.	5.2	50
49	Ultrathin Amorphous Nickel Doped Cobalt Phosphates with Highly Ordered Mesoporous Structures as Efficient Electrocatalyst for Oxygen Evolution Reaction. Small, 2020, 16, e1906766.	5.2	50
50	Carbon nanotube-based materials for persulfate activation to degrade organic contaminants: Properties, mechanisms and modification insights. Journal of Hazardous Materials, 2022, 431, 128536.	6.5	48
51	Asymmetric-Layered Tin Thiophosphate: An Emerging 2D Ternary Anode for High-Performance Sodium Ion Full Cell. ACS Nano, 2018, 12, 12902-12911.	7.3	45
52	Flour food waste derived activated carbon for high-performance supercapacitors. RSC Advances, 2016, 6, 89391-89396.	1.7	44
53	A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range. Journal of Materials Chemistry A, 2015, 3, 18860-18866.	5.2	41
54	Sodiumâ€rich <scp>NASICON</scp> â€structured cathodes for boosting the energy density and lifespan of sodiumâ€freeâ€anode sodium metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	41

#	Article	IF	CITATIONS
55	Scalable synthesis of a foam-like FeS ₂ nanostructure by a solution combustion–sulfurization process for high-capacity sodium-ion batteries. Nanoscale, 2019, 11, 178-184.	2.8	40
56	Facile Synthesis of Crystalline Polymeric Carbon Nitrides with an Enhanced Photocatalytic Performance under Visible Light. ChemCatChem, 2015, 7, 2897-2902.	1.8	38
57	Ni nanoparticles/V ₄ C ₃ T _x MXene heterostructures for electrocatalytic nitrogen fixation. Materials Chemistry Frontiers, 2021, 5, 2338-2346.	3.2	38
58	Electrospinning fabrication and in situ mechanical investigation of individual graphene nanoribbon reinforced carbon nanofiber. Carbon, 2017, 114, 717-723.	5.4	36
59	Designing hybrid architectures for advanced thermoelectric materials. Materials Chemistry Frontiers, 2017, 1, 2457-2473.	3.2	34
60	Synthesis and photocatalytic activity of mesoporous g-C 3 N 4 /MoS 2 hybrid catalysts. Royal Society Open Science, 2018, 5, 180187.	1.1	32
61	A novel Ag ₃ PO ₄ /Nb ₂ O ₅ fiber composite with enhanced photocatalytic performance and stability. RSC Advances, 2015, 5, 102101-102107.	1.7	30
62	Construction of Bi2WO6/CoAl-LDHs S-scheme heterojunction with efficient photo-Fenton-like catalytic performance: Experimental and theoretical studies. Chemosphere, 2022, 291, 133001.	4.2	30
63	Integrated Porous Cu Host Induced Highâ€Stable Bidirectional Li Plating/Stripping Behavior for Practical Li Metal Batteries. Small, 2022, 18, e2105999.	5.2	30
64	Nitrogen-rich hierarchical porous hollow carbon nanofibers for high-performance supercapacitor electrodes. RSC Advances, 2016, 6, 41473-41476.	1.7	25
65	Co/Co3O4 nanoparticles embedded into thin O-doped graphitic layer as bifunctional oxygen electrocatalysts for Zn-air batteries. Chemical Engineering Journal, 2022, 427, 130931.	6.6	25
66	Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Naâ€lon Diffusivity for Sodiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, 2109694.	7.8	24
67	The Passive Effect of MXene on Electrocatalysis: A Case of Ti ₃ C ₂ T _x /CoNiâ^'MOF nanosheets for Oxygen Evolution Reaction. ChemNanoMat, 2021, 7, 539-544.	1.5	23
68	Modifying porous carbon nanofibers with MnO _x –CeO ₂ –Al ₂ O ₃ mixed oxides for NO catalytic oxidation at room temperature. Catalysis Science and Technology, 2016, 6, 422-425.	2.1	20
69	A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore. Materials, 2017, 10, 414.	1.3	20
70	Beneficial restacking of 2D nanomaterials for electrocatalysis: a case of MoS ₂ membranes. Chemical Communications, 2020, 56, 7005-7008.	2.2	20
71	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	19
72	Facile synthesis of a highly luminescent carbon dot@silica nanorattle for in vivo bioimaging. RSC Advances, 2015, 5, 46158-46162.	1.7	18

#	Article	IF	CITATIONS
73	CoSe ₂ -Decorated NbSe ₂ Nanosheets Fabricated via Cation Exchange for Li Storage. ACS Applied Materials & Interfaces, 2018, 10, 37773-37778.	4.0	18
74	Enhancement of Thermoelectric Performance in CuSbSe ₂ Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization. Small, 2018, 14, e1803092.	5.2	17
75	A Tripleâ€Gradient Host for Long Cycling Lithium Metal Anodes at Ultrahigh Current Density. Small, 2020, 16, 2001992.	5.2	16
76	A Fishingâ€Netâ€Like 3D Host for Robust and Ultrahighâ€Rate Lithium Metal Anodes. Small, 2021, 17, e2007231	. 5.2	14
77	Deeply Cyclable and Ultrahighâ€Rate Lithium Metal Anodes Enabled by Coaxial Nanochamber Heterojunction on Carbon Nanofibers. Advanced Science, 2021, 8, e2101940.	5.6	14
78	Controlled synthesis and optical properties of BaFBr:Eu2+ crystals via ethanol/water solutions. Materials Research Bulletin, 2012, 47, 2357-2363.	2.7	12
79	Graphene-supported bimetal phosphorus trisulfides as novel 0D–2D nanohybrid for high rate Li-ion storage. Journal of Energy Chemistry, 2018, 27, 190-194.	7.1	12
80	Harnessing the 2D Structureâ€Enabled Viscoelasticity of Grapheneâ€Based Hydrogel Membranes for Chronic Neural Interfacing. Small Methods, 2022, 6, e2200022.	4.6	12
81	Uniform square-like BaFBr:Eu2+ microplates: controlled synthesis and photoluminescence properties. RSC Advances, 2012, 2, 5403.	1.7	11
82	Large-scale preparation and morphology-dependent photodegradation performances of monodispersed AgBr crystals. Applied Catalysis A: General, 2013, 455, 199-205.	2.2	11
83	Flexible C–Mo ₂ C fiber film with self-fused junctions as a long cyclability anode material for sodium-ion battery. RSC Advances, 2018, 8, 16657-16662.	1.7	11
84	Microwave-assisted high-efficiency degradation of methyl orange by using CuFe2O4/CNT catalysts and insight into degradation mechanism. Environmental Science and Pollution Research, 2021, 28, 42683-42693.	2.7	11
85	Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11306-11313.	2.5	10
86	Nitrogen-enriched hierarchical porous carbon with enhanced performance in supercapacitors and lithium–sulfur batteries. RSC Advances, 2015, 5, 75403-75410.	1.7	8
87	Highly Elastic Binders Incorporated with Helical Molecules to Improve the Electrochemical Stability of Black Phosphorous Anodes for Sodiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 101-107.	2.4	8
88	Enhancement of the thermoelectric performance of CuInTe2 via SnO2 in situ replacement. Journal of Materials Science: Materials in Electronics, 2018, 29, 4732-4737.	1.1	4
89	Multilayer Porous Vanadium Nitride Microsheets Anodes for Highly Stable Na-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 286-292.	1.3	4
90	Activating localized lattice oxygen for durable acidic water oxidation. Chem Catalysis, 2021, 1, 506-508.	2.9	4

#	Article	IF	CITATIONS
91	Hydrogen Evolution: Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production (Adv. Funct. Mater. 44/2015). Advanced Functional Materials, 2015, 25, 6952-6952.	7.8	3
92	Ultrasonic Spray Pyrolysisâ $\in a$ ssisted Fabrication of Ultrathin CuWO 4 Films with Improved Photoelectrochemical Performance. ChemNanoMat, 0, , .	1.5	3
93	Thermoelectric Performance: Enhancement of Thermoelectric Performance in CuSbSe 2 Nanoplateâ€Based Pellets by Texture Engineering and Carrier Concentration Optimization (Small) Tj ETQq1 1 0.7	78 43 214 rg	;BT2/Overlock
94	Sodium Ion Capacitors: The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodium-Ion Capacitors (Adv. Energy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870050.	10.2	0
95	Lithium Metal Anodes: A Tripleâ€Gradient Host for Long Cycling Lithium Metal Anodes at Ultrahigh Current Density (Small 30/2020). Small, 2020, 16, 2070167.	5.2	Ο
96	Localized Electron Density Redistribution in Fluorophosphate Cathode: Dangling Anion Regulation and Enhanced Naâ€Ion Diffusivity for Sodiumâ€Ion Batteries (Adv. Funct. Mater. 4/2022). Advanced Functional Materials, 2022, 32, .	7.8	0