

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4694153/publications.pdf Version: 2024-02-01

Δισίλλε

#	Article	IF	CITATIONS
1	First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sensing, 2016, 8, 640.	4.0	343
2	The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems, 2003, 13, 507-549.	2.0	266
3	Lakeâ€size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 2012, 39, .	4.0	199
4	Ecosystem respiration: Drivers of daily variability and background respiration in lakes around the globe. Limnology and Oceanography, 2013, 58, 849-866.	3.1	195
5	Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins. Toxins, 2018, 10, 156.	3.4	159
6	Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climatic Change, 2017, 141, 759-773.	3.6	83
7	Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 2020, 11, 2126.	12.8	73
8	High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia, 2012, 694, 57-74.	2.0	72
9	Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia, 2011, 660, 105-115.	2.0	70
10	Northern Hemisphere Atmospheric Stilling Accelerates Lake Thermal Responses to a Warming World. Geophysical Research Letters, 2019, 46, 11983-11992.	4.0	65
11	Paired O ₂ –CO ₂ measurements provide emergent insights into aquatic ecosystem function. Limnology and Oceanography Letters, 2020, 5, 287-294.	3.9	51
12	Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnology and Oceanography, 2018, 63, 2436-2449.	3.1	47
13	Continuous and high-frequency measurements in limnology: history, applications, and future challenges. Environmental Reviews, 2016, 24, 52-62.	4.5	45
14	Role of a productive lake in carbon sequestration within a calcareous catchment. Science of the Total Environment, 2016, 550, 225-230.	8.0	42
15	Delving deeper: Metabolic processes in the metalimnion of stratified lakes. Limnology and Oceanography, 2017, 62, 1288-1306.	3.1	40
16	A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development, 2022, 15, 4597-4623.	3.6	37
17	Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Võrtsjäv, Estonia. Journal of Hydrology, 2012, 475, 306-313.	5.4	32
18	Latitude and lake size are important predictors of over″ake atmospheric stability. Geophysical Research Letters, 2017, 44, 8875-8883.	4.0	31

Alo Laas

#	Article	IF	CITATIONS
19	A New Thermal Categorization of Iceâ€Covered Lakes. Geophysical Research Letters, 2021, 48, e2020GL091374.	4.0	31
20	A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins. Scientific Data, 2018, 5, 180226.	5.3	30
21	Hidden treasures: Human-made aquatic ecosystems harbour unexplored opportunities. Ambio, 2020, 49, 531-540.	5.5	28
22	Atmospheric stilling offsets the benefits from reduced nutrient loading in a large shallow lake. Limnology and Oceanography, 2020, 65, 717-731.	3.1	27
23	Reconstructed long-term time series of phytoplankton primary production of a large shallow temperate lake: the basis to assess the carbon balance and its climate sensitivity. Hydrobiologia, 2011, 667, 205-222.	2.0	24
24	Wind and trophic status explain within and amongâ€lake variability of algal biomass. Limnology and Oceanography Letters, 2018, 3, 409-418.	3.9	24
25	Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyllâ€ <i>a</i> in north temperate lakes. Global Change Biology, 2021, 27, 4615-4629.	9.5	22
26	Increased winter drownings in ice-covered regions with warmer winters. PLoS ONE, 2020, 15, e0241222.	2.5	21
27	Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjäv, Estonia. Aquatic Ecosystem Health and Management, 2010, 13, 154-163.	0.6	20
28	From Bacteria to Piscivorous Fish: Estimates of Whole-Lake and Component-Specific Metabolism with an Ecosystem Approach. PLoS ONE, 2014, 9, e101845.	2.5	20
29	Major Effects of Alkalinity on the Relationship Between Metabolism and Dissolved Inorganic Carbon Dynamics in Lakes. Ecosystems, 2020, 23, 1566-1580.	3.4	19
30	Stratification strength and light climate explain variation in chlorophyll <scp><i>a</i></scp> at the continental scale in a European multilake survey in a heatwave summer. Limnology and Oceanography, 2021, 66, 4314-4333.	3.1	19
31	High-frequency data within a modeling framework: On the benefit of assessing uncertainties of lake metabolism. Ecological Modelling, 2014, 294, 27-35.	2.5	18
32	How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes. Climatic Change, 2020, 159, 565-580.	3.6	18
33	Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences. Science of the Total Environment, 2016, 566-567, 63-75.	8.0	17
34	Fluxes of carbon and nutrients through the inflows and outflow of Lake Võrtsjä⁄, Estonia. Estonian Journal of Ecology, 2011, 60, 39.	0.5	14
35	Changes in water temperature and chemistry preceding a massive kill of bottom-dwelling fish: an analysis of high-frequency buoy data of shallow Lake VAµrtsjA¤⁄ (Estonia). Inland Waters, 2016, 6, 535-542.	2.2	14
36	Numerical Exploration of the Planktonic to Benthic Primary Production Ratios in Lakes of the Baltic Sea Catchment. Ecosystems, 2016, 19, 1386-1400.	3.4	13

Alo Laas

#	Article	IF	CITATIONS
37	Changes in particulate organic matter passing through a large shallow lowland lake. Proceedings of the Estonian Academy of Sciences, 2018, 67, 93.	1.5	13
38	Cross-continental importance of CH4 emissions from dry inland-waters. Science of the Total Environment, 2022, 814, 151925.	8.0	13
39	Horizontal differences in ecosystem metabolism of a large shallow lake. Journal of Hydrology, 2016, 535, 93-100.	5.4	10
40	The relevance of pelagic calcification in the global carbon budget of lakes and reservoirs. , 2022, 41, 17-25.		10
41	An estimation of diel metabolic rates of eight limnological archetypes from Estonia using high-frequency measurements. Inland Waters, 2016, 6, 352-363.	2.2	8
42	Drainage Ratio as a Strong Predictor of Allochthonous Carbon Budget in Hemiboreal Lakes. Ecosystems, 2019, 22, 805-817.	3.4	8
43	The NETLAKE Metadatabase-A Tool to Support Automatic Monitoring on Lakes in Europe and Beyond. Limnology and Oceanography Bulletin, 2017, 26, 95-100.	0.4	6
44	Eutrophication and Geochemistry Drive Pelagic Calcite Precipitation in Lakes. Water (Switzerland), 2021, 13, 597.	2.7	5
45	Summer greenhouse gas fluxes in different types of hemiboreal lakes. Science of the Total Environment, 2022, 843, 156732.	8.0	2
46	How light conditions influence theoretical pelagic to benthic primary production ratios in small lakes. Lakes and Reservoirs: Research and Management, 2019, 24, 18-23.	0.9	0