Todd J Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4693143/publications.pdf

Version: 2024-02-01

317 papers 24,527 citations

82 h-index 9073 144 g-index

353 all docs $\begin{array}{c} 353 \\ \text{docs citations} \end{array}$

times ranked

353

13678 citing authors

#	Article	IF	CITATIONS
1	Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 2009, 459, 68-72.	13.7	1,446
2	Isomerization Through Conical Intersections. Annual Review of Physical Chemistry, 2007, 58, 613-634.	4.8	741
3	Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. Journal of Chemical Theory and Computation, 2009, 5, 2619-2628.	2.3	734
4	Ab Initio Multiple Spawning:  Photochemistry from First Principles Quantum Molecular Dynamics. Journal of Physical Chemistry A, 2000, 104, 5161-5175.	1.1	717
5	Conical intersections and double excitations in time-dependent density functional theory. Molecular Physics, 2006, 104, 1039-1051.	0.8	557
6	Ab Initio Nonadiabatic Quantum Molecular Dynamics. Chemical Reviews, 2018, 118, 3305-3336.	23.0	459
7	Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation. Journal of Chemical Theory and Computation, 2008, 4, 222-231.	2.3	458
8	Building Force Fields: An Automatic, Systematic, and Reproducible Approach. Journal of Physical Chemistry Letters, 2014, 5, 1885-1891.	2.1	400
9	Multi-Electronic-State Molecular Dynamics:Â A Wave Function Approach with Applications. The Journal of Physical Chemistry, 1996, 100, 7884-7895.	2.9	371
10	Ab Initio Molecular Dynamics and Time-Resolved Photoelectron Spectroscopy of Electronically Excited Uracil and Thymine. Journal of Physical Chemistry A, 2007, 111, 8500-8508.	1.1	355
11	Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. Journal of Chemical Theory and Computation, 2009, 5, 1004-1015.	2.3	354
12	Optimizing Conical Intersections without Derivative Coupling Vectors:  Application to Multistate Multireference Second-Order Perturbation Theory (MS-CASPT2). Journal of Physical Chemistry B, 2008, 112, 405-413.	1.2	340
13	Generating Efficient Quantum Chemistry Codes for Novel Architectures. Journal of Chemical Theory and Computation, 2013, 9, 213-221.	2.3	316
14	Mechanism and Dynamics of Azobenzene Photoisomerization. Journal of the American Chemical Society, 2003, 125, 8098-8099.	6.6	296
15	Discovering chemistry with an ab initio nanoreactor. Nature Chemistry, 2014, 6, 1044-1048.	6.6	286
16	Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science, 2010, 329, 1057-1060.	6.0	280
17	Ab Initio Quantum Molecular Dynamics. Advances in Chemical Physics, 2002, , 439-512.	0.3	279
18	Systematic Improvement of a Classical Molecular Model of Water. Journal of Physical Chemistry B, 2013, 117, 9956-9972.	1.2	279

#	Article	IF	CITATIONS
19	Photodynamics in Complex Environments: <i>Ab Initio</i> Multiple Spawning Quantum Mechanical/Molecular Mechanical Dynamics. Journal of Physical Chemistry B, 2009, 113, 3280-3291.	1.2	259
20	Ab Initio Study of Cisâ^'Trans Photoisomerization in Stilbene and Ethylene. Journal of Physical Chemistry A, 2003, 107, 829-837.	1.1	251
21	Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science, 2017, 357, 475-479.	6.0	240
22	Conical intersection dynamics in solution: The chromophore of Green Fluorescent Protein. Faraday Discussions, 2004, 127, 149-163.	1.6	222
23	First Principles Dynamics and Minimum Energy Pathways for Mechanochemical Ring Opening of Cyclobutene. Journal of the American Chemical Society, 2009, 131, 6377-6379.	6.6	219
24	Insights for Light-Driven Molecular Devices from Ab Initio Multiple Spawning Excited-State Dynamics of Organic and Biological Chromophores. Accounts of Chemical Research, 2006, 39, 119-126.	7.6	213
25	Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory. Journal of Chemical Physics, 2012, 137, 044103.	1.2	210
26	Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nature Chemistry, 2014, 6, 623-628.	6.6	198
27	Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. Journal of Physical Chemistry B, 2017, 121, 4023-4039.	1.2	192
28	Implementation of ab initio multiple spawning in the Molpro quantum chemistry package. Chemical Physics, 2008, 347, 3-16.	0.9	190
29	Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nature Chemistry, 2015, 7, 323-327.	6.6	182
30	Excited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units. Journal of Chemical Theory and Computation, 2011, 7, 1814-1823.	2.3	180
31	Imaging CF ₃ I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science, 2018, 361, 64-67.	6.0	170
32	Graphical Processing Units for Quantum Chemistry. Computing in Science and Engineering, 2008, 10, 26-34.	1.2	169
33	<i>Ab initio</i> multiple cloning algorithm for quantum nonadiabatic molecular dynamics. Journal of Chemical Physics, 2014, 141, 054110.	1.2	168
34	QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chemical Physics Letters, 2007, 438, 315-320.	1.2	165
35	Conical Intersections in Solution:  A QM/MM Study Using Floating Occupation Semiempirical Configuration Interaction Wave Functions. Journal of Physical Chemistry A, 2003, 107, 3822-3830.	1.1	162
36	Tensor hypercontraction. II. Least-squares renormalization. Journal of Chemical Physics, 2012, 137, 224106.	1.2	162

#	Article	IF	Citations
37	Electronic Absorption Spectra from MM and <i>ab Initio</i> QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein. Journal of Chemical Theory and Computation, 2012, 8, 5092-5106.	2.3	158
38	The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nature Chemistry, 2019 , 11 , 504 - 509 .	6.6	157
39	How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol <i>O</i> -Methyltransferase. Journal of Physical Chemistry B, 2016, 120, 11381-11394.	1.2	150
40	Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver. Physical Review Letters, 2019, 122, 230401.	2.9	150
41	Masked Cyanoacrylates Unveiled by Mechanical Force. Journal of the American Chemical Society, 2010, 132, 4558-4559.	6.6	149
42	Ab Initio Multiple Spawning Dynamics Using Multi-State Second-Order Perturbation Theory. Journal of Physical Chemistry A, 2009, 113, 13656-13662.	1.1	146
43	Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption. Nature Communications, 2017, 8, 29.	5.8	144
44	<scp>TeraChem /scp>: A graphical processing unit<scp>â€accelerated package for <scp>largeâ€scale scp> ab initio molecular dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1494.</scp></scp></scp>	6.2	143
45	Excitedâ€State Dynamics of Cytosine Reveal Multiple Intrinsic Subpicosecond Pathways. ChemPhysChem, 2008, 9, 2486-2490.	1.0	142
46	Ultrafast X-ray Auger probing of photoexcited molecular dynamics. Nature Communications, 2014, 5, 4235.	5.8	140
47	The role of intersection topography in bond selectivity of cis-trans photoisomerization. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1769-1773.	3.3	138
48	Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs). Journal of Chemical Theory and Computation, 2011, 7, 949-954.	2.3	138
49	Communication: Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determination of correlated wavefunctions. Journal of Chemical Physics, 2012, 137, 221101.	1.2	135
50	Role of Rydberg States in the Photochemical Dynamics of Ethylene. Journal of Physical Chemistry A, 2012, 116, 2808-2818.	1.1	127
51	Ultrafast internal conversion in ethylene. I. The excited state lifetime. Journal of Chemical Physics, 2011, 134, 244306.	1.2	126
52	Simulation of the photodynamics of azobenzene on its first excited state: Comparison of full multiple spawning and surface hopping treatments. Journal of Chemical Physics, 2005, 123, 234308.	1.2	121
53	Competitive Decay at Two- and Three-State Conical Intersections in Excited-State Intramolecular Proton Transfer. Journal of the American Chemical Society, 2005, 127, 4560-4561.	6.6	117
54	Molecular Collision Dynamics on Several Electronic States. Journal of Physical Chemistry A, 1997, 101, 6389-6402.	1.1	114

#	Article	IF	CITATIONS
55	Nonstationary Electronic States and Site-Selective Reactivity. Journal of Physical Chemistry A, 1997, 101, 7702-7710.	1.1	113
56	Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics. Journal of Physical Chemistry Letters, 2011, 2, 1789-1793.	2.1	113
57	Variable Electronic Coupling in Phenylacetylene Dendrimers:  The Role of Förster, Dexter, and Charge-Transfer Interactions. Journal of Physical Chemistry A, 2004, 108, 671-682.	1.1	111
58	Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15154-15159.	3 . 3	111
59	Ab Initio Molecular Dynamics of Excited-State Intramolecular Proton Transfer Using Multireference Perturbation Theory. Journal of Physical Chemistry A, 2007, 111, 11302-11310.	1.1	110
60	Ab Initio Multiple Spawning Dynamics of Excited Butadiene: Role of Charge Transfer. Journal of Physical Chemistry A, 2009, 113, 12815-12824.	1.1	109
61	Ab Initio Excited-State Dynamics of the Photoactive Yellow Protein Chromophore. Journal of the American Chemical Society, 2003, 125, 12710-12711.	6.6	108
62	<i>Ab initio</i> floating occupation molecular orbital-complete active space configuration interaction: An efficient approximation to CASSCF. Journal of Chemical Physics, 2010, 132, 234102.	1.2	106
63	Multicolor Mechanochromism of a Polymer/Silica Composite with Dual Distinct Mechanophores. Journal of the American Chemical Society, 2019, 141, 1898-1902.	6.6	105
64	Conformationally Controlled Chemistry: Excited-State Dynamics Dictate Ground-State Reaction. Science, 2007, 315, 1561-1565.	6.0	100
65	Protonic Gating of Excited-State Twisting and Charge Localization in GFP Chromophores: A Mechanistic Hypothesis for Reversible Photoswitching. Journal of the American Chemical Society, 2010, 132, 1192-1193.	6.6	100
66	Ab initio molecular dynamics around a conical intersection: Li(2p) + H2. Chemical Physics Letters, 1997, 272, 139-147.	1.2	99
67	Ab Initio Quantum Chemistry for Protein Structures. Journal of Physical Chemistry B, 2012, 116, 12501-12509.	1.2	99
68	An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units. Journal of Chemical Physics, 2015, 142, 224103.	1.2	98
69	Using Meta Conjugation To Enhance Charge Separation versus Charge Recombination in Phenylacetylene Donorâ^'Bridgeâ^'Acceptor Complexes. Journal of the American Chemical Society, 2005, 127, 16348-16349.	6.6	97
70	Seaming is believing. Nature, 2010, 467, 412-413.	13.7	95
71	Control of 1,3-Cyclohexadiene Photoisomerization Using Light-Induced Conical Intersections. Journal of Physical Chemistry A, 2012, 116, 2758-2763.	1.1	95
72	Automated Discovery and Refinement of Reactive Molecular Dynamics Pathways. Journal of Chemical Theory and Computation, 2016, 12, 638-649.	2.3	95

#	Article	IF	Citations
73	Quantum Energy Flow andtrans-Stilbene Photoisomerization: an Example of a Non-RRKM Reactionâ€. Journal of Physical Chemistry A, 2003, 107, 10706-10716.	1.1	94
74	Meta-Conjugation and Excited-State Coupling in Phenylacetylene Dendrimers. Journal of the American Chemical Society, 2003, 125, 9288-9289.	6.6	93
75	Communication: GAIMSâ€"Generalized <i>Ab Initio</i> Multiple Spawning for both internal conversion and intersystem crossing processes. Journal of Chemical Physics, 2016, 144, 101102.	1.2	93
76	Ab Initio Molecular Dynamics of Excited-State Intramolecular Proton Transfer around a Three-State Conical Intersection in Malonaldehydeâ€. Journal of Physical Chemistry A, 2006, 110, 618-630.	1.1	92
77	The Charge Transfer Problem in Density Functional Theory Calculations of Aqueously Solvated Molecules. Journal of Physical Chemistry B, 2013, 117, 12189-12201.	1.2	92
78	Ultrafast isomerization initiated by X-ray core ionization. Nature Communications, 2015, 6, 8199.	5.8	92
79	Simultaneous observation of nuclear and electronic dynamics by ultrafast electron diffraction. Science, 2020, 368, 885-889.	6.0	92
80	Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models. Journal of Chemical Theory and Computation, 2015, 11, 3131-3144.	2.3	91
81	A Remote Stereochemical Lever Arm Effect in Polymer Mechanochemistry. Journal of the American Chemical Society, 2014, 136, 15162-15165.	6.6	89
82	Classical/quantal method for multistate dynamics: A computational study. Journal of Chemical Physics, 1996, 104, 2847-2856.	1.2	87
83	TeraChem: Accelerating electronic structure and <i>ab initio</i> molecular dynamics with graphical processing units. Journal of Chemical Physics, 2020, 152, 224110.	1.2	87
84	An Ab Initio Exciton Model Including Charge-Transfer Excited States. Journal of Chemical Theory and Computation, 2017, 13, 3493-3504.	2.3	85
85	Revisiting Molecular Dissociation in Density Functional Theory: A Simple Model. Journal of Chemical Theory and Computation, 2009, 5, 770-780.	2.3	84
86	Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Faraday Discussions, 1998, 110, 447-462.	1.6	83
87	Ab Initio Nonadiabatic Dynamics of Multichromophore Complexes: A Scalable Graphical-Processing-Unit-Accelerated Exciton Framework. Accounts of Chemical Research, 2014, 47, 2857-2866.	7.6	83
88	An "optimal―spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics. Journal of Chemical Physics, 2009, 130, 134113.	1.2	82
89	Electronic structure of solid 1,3,5-triamino-2,4,6-trinitrobenzene under uniaxial compression: Possible role of pressure-induced metallization in energetic materials. Physical Review B, 2003, 67, .	1.1	77
90	The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nature Chemistry, 2020, 12, 302-309.	6.6	76

#	Article	IF	CITATIONS
91	Optimization of Conical Intersections with Floating Occupation Semiempirical Configuration Interaction Wave Functions. Journal of Physical Chemistry A, 2002, 106, 4679-4689.	1.1	75
92	Substituent Effects on Dynamics at Conical Intersections:  α,β-Enones. Journal of Physical Chemistry A, 2007, 111, 11948-11960.	1.1	75
93	Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability. Journal of the American Chemical Society, 2015, 137, 5730-5740.	6.6	75
94	Ultrafast internal conversion in ethylene. II. Mechanisms and pathways for quenching and hydrogen elimination. Journal of Chemical Physics, 2012, 136, 124317.	1,2	72
95	Pseudospectral Mo/ller–Plesset perturbation theory through third order. Journal of Chemical Physics, 1994, 100, 3631-3638.	1.2	70
96	Comparative Genomics and Site-Directed Mutagenesis Support the Existence of Only One Input Channel for Protons in the C-Family (<i>cbb</i> ₃ Oxidase) of Hemeâ^*Copper Oxygen Reductases. Biochemistry, 2007, 46, 9963-9972.	1.2	70
97	Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy. Nature Communications, 2019, 10, 3133.	5.8	68
98	Firstâ€principles molecular dynamics on multiple electronic states: A case study of NaI. Journal of Chemical Physics, 1996, 105, 6334-6341.	1.2	66
99	Quartic scaling second-order approximate coupled cluster singles and doubles via tensor hypercontraction: THC-CC2. Journal of Chemical Physics, 2013, 138, 124111.	1.2	66
100	Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging. Physical Chemistry Chemical Physics, 2015, 17, 3316-3325.	1.3	66
101	Mediation of donor–acceptor distance in an enzymatic methyl transfer reaction. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7954-7959.	3.3	65
102	Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model. Physical Chemistry Chemical Physics, 2017, 19, 14924-14936.	1.3	64
103	Evolutionary Migration of a Post-Translationally Modified Active-Site Residue in the Proton-Pumping Heme-Copper Oxygen Reductasesâ€. Biochemistry, 2006, 45, 15405-15410.	1.2	63
104	Pseudospectral time-dependent density functional theory. Journal of Chemical Physics, 2008, 128, 104103.	1.2	63
105	Reactive Cross-Talk between Adjacent Tension-Trapped Transition States. Journal of the American Chemical Society, 2011, 133, 3222-3225.	6.6	63
106	Time-resolved photoelectron spectroscopy from first principles: Excited state dynamics of benzene. Faraday Discussions, 2011, 150, 293.	1.6	61
107	Exact Tensor Hypercontraction: A Universal Technique for the Resolution of Matrix Elements of Local Finite-Range <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -Body Potentials in Many-Body Quantum Problems. Physical Review Letters, 2013, 111, 132505.	2.9	61
108	Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model <i>trans</i> -Protonated Schiff Base. Journal of Physical Chemistry B, 2016, 120, 1940-1949.	1,2	61

#	Article	IF	CITATIONS
109	Excited state direct dynamics of benzene with reparameterized multi-reference semiempirical configuration interaction methods. Chemical Physics, 2004, 304, 133-145.	0.9	60
110	An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units. Journal of Chemical Physics, 2015, 143, 154107.	1,2	60
111	Dynamics of the collisional electron transfer and femtosecond photodissociation of Nal on ab initio electronic energy curves. Chemical Physics Letters, 1996, 259, 252-260.	1.2	59
112	A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization. Journal of Chemical Physics, 2011, 135, 224110.	1,2	59
113	Electronic Absorption and Resonance Raman Spectroscopy from Ab Initio Quantum Molecular Dynamics. Journal of Physical Chemistry A, 1999, 103, 10517-10527.	1.1	58
114	Communication: Acceleration of coupled cluster singles and doubles via orbital-weighted least-squares tensor hypercontraction. Journal of Chemical Physics, 2014, 140, 181102.	1.2	57
115	Helix Switching of a Key Active-Site Residue in the Cytochromecbb3Oxidasesâ€. Biochemistry, 2005, 44, 10766-10775.	1.2	56
116	Electrostatic control of photoisomerization in the photoactive yellow protein chromophore: Ab initio multiple spawning dynamics. Chemical Physics Letters, 2008, 460, 272-277.	1.2	56
117	Transient X-Ray Fragmentation: Probing a Prototypical Photoinduced Ring Opening. Physical Review Letters, 2012, 108, 253006.	2.9	56
118	Optimization of width parameters for quantum dynamics with frozen Gaussian basis sets. Chemical Physics, 2010, 370, 70-77.	0.9	55
119	GPU-Accelerated State-Averaged Complete Active Space Self-Consistent Field Interfaced with Ab Initio Multiple Spawning Unravels the Photodynamics of Provitamin D ₃ . Journal of Physical Chemistry Letters, 2016, 7, 2444-2449.	2.1	55
120	Automated Code Engine for Graphical Processing Units: Application to the Effective Core Potential Integrals and Gradients. Journal of Chemical Theory and Computation, 2016, 12, 92-106.	2.3	55
121	Between ethylene and polyenes - the non-adiabatic dynamics of cis-dienes. Faraday Discussions, 2012, 157, 193.	1.6	54
122	Tensor Hypercontraction Equation-of-Motion Second-Order Approximate Coupled Cluster: Electronic Excitation Energies in O(N4) Time. Journal of Physical Chemistry B, 2013, 117, 12972-12978.	1.2	54
123	Local weak pairs spectral and pseudospectral singles and doubles configuration interaction. Journal of Chemical Physics, 1996, 105, 6455-6470.	1.2	53
124	Nonlinear dimensionality reduction for nonadiabatic dynamics: The influence of conical intersection topography on population transfer rates. Journal of Chemical Physics, 2012, 137, 22A519.	1.2	53
125	Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method. Journal of Chemical Theory and Computation, 2018, 14, 339-350.	2.3	53
126	Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature, 2021, 596, 531-535.	13.7	53

#	Article	IF	CITATIONS
127	Atomic orbital-based SOS-MP2 with tensor hypercontraction. I. GPU-based tensor construction and exploiting sparsity. Journal of Chemical Physics, 2016, 144, 174111.	1.2	52
128	Non-adiabatic molecular dynamics: Split-operator multiple spawning with applications to photodissociation. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 941-947.	1.7	51
129	Excited state non-adiabatic dynamics of the smallest polyene, <i>trans</i> 1,3-butadiene. II. <i>Ab initio</i> multiple spawning simulations. Journal of Chemical Physics, 2018, 148, 164303.	1.2	51
130	Semiclassical Tunneling Rates from Ab Initio Molecular Dynamics. Journal of Physical Chemistry A, 1999, 103, 6055-6059.	1.1	50
131	Multicentered valence electron effective potentials: A solution to the link atom problem for ground and excited electronic states. Journal of Chemical Physics, 2006, 124, 084107.	1.2	50
132	A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units. Journal of Chemical Physics, 2017, 146, 174113.	1.2	50
133	Modeling mechanophore activation within a viscous rubbery network. Journal of the Mechanics and Physics of Solids, 2014, 63, 141-153.	2.3	49
134	Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism. Journal of Chemical Physics, 2017, 147, 034113.	1.2	49
135	Modeling mechanophore activation within a crosslinked glassy matrix. Journal of Applied Physics, 2013, 114, .	1.1	48
136	Ab Initio Multiple Spawning Photochemical Dynamics of DMABN Using GPUs. Journal of Physical Chemistry A, 2017, 121, 265-276.	1.1	48
137	Parallel molecular mechanisms for enzyme temperature adaptation. Science, 2021, 371, .	6.0	48
138	Tensor Hypercontraction Second-Order MÃ, ller–Plesset Perturbation Theory: Grid Optimization and Reaction Energies. Journal of Chemical Theory and Computation, 2015, 11, 3042-3052.	2.3	47
139	A charged ring model for classical OHâ^'(aq) simulations. Chemical Physics Letters, 2007, 442, 128-133.	1.2	46
140	On the Extent and Connectivity of Conical Intersection Seams and the Effects of Three-State Intersections. Journal of Physical Chemistry A, 2008, 112, 12559-12567.	1.1	46
141	<i>Ab Initio</i> Interactive Molecular Dynamics on Graphical Processing Units (GPUs). Journal of Chemical Theory and Computation, 2015, 11, 4536-4544.	2.3	46
142	Nonadiabatic Dynamics Simulation of the Wavelength-Dependent Photochemistry of Azobenzene Excited to the $\vec{\text{nl}} \in \mathbb{Z}$ and $\vec{\text{ll}} \in \mathbb{Z}$ Excited States. Journal of the American Chemical Society, 2020, 142, 20680-20690.	6.6	46
143	Pseudospectral full configuration interaction. Journal of Chemical Physics, 1992, 97, 1876-1880.	1.2	45
144	Ab initio molecular dynamics with equation-of-motion coupled-cluster theory: electronic absorption spectrum of ethylene. Chemical Physics Letters, 2003, 375, 299-308.	1.2	45

#	Article	IF	CITATIONS
145	A multistate empirical valence bond model for solvation and transport simulations of OHâ [^] in aqueous solutions. Physical Chemistry Chemical Physics, 2009, 11, 9420.	1.3	45
146	Discrete variable representation in electronic structure theory: Quadrature grids for least-squares tensor hypercontraction. Journal of Chemical Physics, 2013, 138, 194107.	1.2	45
147	Direct imaging of excited electronic states using diffraction techniques: theoretical considerations. Chemical Physics Letters, 1996, 262, 405-414.	1.2	44
148	Classical Fluctuating Charge Theories: The Maximum Entropy Valence Bond Formalism and Relationships to Previous Modelsâ€. Journal of Physical Chemistry A, 2001, 105, 2842-2850.	1.1	44
149	A unified theoretical framework for fluctuating-charge models in atom-space and in bond-space. Journal of Chemical Physics, 2008, 129, 214113.	1.2	44
150	Exploring the Conical Intersection Seam: The Seam Space Nudged Elastic Band Method. Journal of Chemical Theory and Computation, 2013, 9, 1155-1163.	2.3	44
151	Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units. Journal of Chemical Physics, 2015, 143, 014111.	1.2	44
152	<i>Ab initio</i> multiple spawning on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical intersections. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 164003.	0.6	44
153	Ab Initio Reactive Computer Aided Molecular Design. Accounts of Chemical Research, 2017, 50, 652-656.	7.6	44
154	First-Principles Characterization of the Elusive I Fluorescent State and the Structural Evolution of Retinal Protonated Schiff Base in Bacteriorhodopsin. Journal of the American Chemical Society, 2019, 141, 18193-18203.	6.6	43
155	Intermolecular vibrations mediate ultrafast singlet fission. Science Advances, 2020, 6, .	4.7	42
156	Geodesic interpolation for reaction pathways. Journal of Chemical Physics, 2019, 150, 164103.	1.2	41
157	A New Approach to Reactive Potentials with Fluctuating Charges:Â Quadratic Valence-Bond Model. Journal of Physical Chemistry A, 2004, 108, 3076-3084.	1.1	40
158	Crossing conditions in coupled cluster theory. Journal of Chemical Physics, 2017, 147, 164105.	1,2	40
159	Pseudospectral multireference single and double excitation configuration interaction. Journal of Chemical Physics, 1995, 102, 7564-7572.	1.2	39
160	PSEUDOSPECTRAL METHODS APPLIED TO THE ELECTRON CORRELATION PROBLEM. Advanced Series in Physical Chemistry, 1995, , 1132-1165.	1.5	39
161	Rank reduced coupled cluster theory. I. Ground state energies and wavefunctions. Journal of Chemical Physics, 2019, 150, 164118.	1.2	37
162	Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra. Journal of Chemical Physics, 2013, 139, 034112.	1.2	35

#	Article	IF	CITATIONS
163	Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations. Physical Chemistry Chemical Physics, 2014, 16, 11770-11779.	1.3	35
164	Excited state non-adiabatic dynamics of the smallest polyene, <i>trans</i> 1,3-butadiene. I. Time-resolved photoelectron-photoion coincidence spectroscopy. Journal of Chemical Physics, 2018, 148, 164302.	1.2	35
165	How Does Peripheral Functionalization of Ruthenium(II)â€"Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franckâ€"Condon Point?. ChemPhysChem, 2015, 16, 1395-1404.	1.0	34
166	Structural Coupling Throughout the Active Site Hydrogen Bond Networks of Ketosteroid Isomerase and Photoactive Yellow Protein. Journal of the American Chemical Society, 2018, 140, 9827-9843.	6.6	34
167	Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductorâ€ike polarizable continuum models. International Journal of Quantum Chemistry, 2019, 119, e25760.	1.0	34
168	Holeâ€"hole Tammâ€"Dancoff-approximated density functional theory: A highly efficient electronic structure method incorporating dynamic and static correlation. Journal of Chemical Physics, 2020, 153, 024110.	1.2	34
169	Electronic structure software. Journal of Chemical Physics, 2020, 153, 070401.	1.2	34
170	Multiple time step integrators in <i>ab initio</i> molecular dynamics. Journal of Chemical Physics, 2014, 140, 084116.	1.2	33
171	Flyby reaction trajectories: Chemical dynamics under extrinsic force. Science, 2021, 373, 208-212.	6.0	33
172	Photochemical Dynamics of Ethylene Cation C ₂ H ₄ ⁺ . Journal of Physical Chemistry Letters, 2014, 5, 1467-1471.	2.1	32
173	Direct QM/MM Excited-State Dynamics of Retinal Protonated Schiff Base in Isolation and Methanol Solution. Journal of Physical Chemistry B, 2015, 119, 704-714.	1.2	32
174	The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2017, 13, 6230-6236.	2.3	32
175	 <i>Ab initio </i> multiple spawning dynamics of excited state intramolecular proton transfer: the role of spectroscopically dark states. Molecular Physics, 2008, 106, 537-545.	0.8	31
176	Quantum chemical insights into the dependence of porphyrin basicity on the meso-aryl substituents: thermodynamics, buckling, reaction sites and molecular flexibility. Physical Chemistry Chemical Physics, 2015, 17, 14096-14106.	1.3	31
177	Communication: XFAIMS—eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. Journal of Chemical Physics, 2016, 145, 191104.	1.2	31
178	α-CASSCF: An Efficient, Empirical Correction for SA-CASSCF To Closely Approximate MS-CASPT2 Potential Energy Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 2432-2437.	2.1	31
179	Ultrafast isomerization in acetylene dication after carbon K-shell ionization. Nature Communications, 2017, 8, 453.	5.8	31
180	Reduced scaling CASPT2 using supporting subspaces and tensor hyper-contraction. Journal of Chemical Physics, 2018, 149, 044108.	1,2	31

#	Article	IF	CITATIONS
181	The non-adiabatic nanoreactor: towards the automated discovery of photochemistry. Chemical Science, 2021, 12, 7294-7307.	3.7	31
182	Variational geminal-augmented multireference self-consistent field theory: Two-electron systems. Journal of Chemical Physics, 2010, 132, 054103.	1.2	30
183	Interfacing the Ab Initio Multiple Spawning Method with Electronic Structure Methods in GAMESS: Photodecay of <i>trans-</i> Azomethane. Journal of Physical Chemistry A, 2014, 118, 10902-10908.	1.1	30
184	Pseudospectral double excitation configuration interaction. Journal of Chemical Physics, 1993, 98, 7081-7085.	1.2	29
185	Solvation of the Fluoride Anion by Methanolâ€. Journal of Physical Chemistry A, 2002, 106, 10015-10021.	1.1	29
186	A Continuous Spawning Method for Nonadiabatic Dynamics and Validation for the Zeroâ€Temperature Spinâ€Boson Problem. Israel Journal of Chemistry, 2007, 47, 75-88.	1.0	29
187	A divide and conquer real space finite-element Hartree–Fock method. Journal of Chemical Physics, 2010, 132, 034101.	1.2	29
188	Rich Athermal Groundâ€State Chemistry Triggered by Dynamics through a Conical Intersection. Angewandte Chemie - International Edition, 2016, 55, 14993-14996.	7.2	29
189	Atomic orbital-based SOS-MP2 with tensor hypercontraction. II. Local tensor hypercontraction. Journal of Chemical Physics, 2017, 146, 034104.	1.2	29
190	Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 6897-6903.	1.1	29
191	Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chemical Science, 2020, 11, 4180-4193.	3.7	29
192	The Spin-Flip Variant of the Algebraic-Diagrammatic Construction Yields the Correct Topology of S ₁ /S ₀ Conical Intersections. Journal of Chemical Theory and Computation, 2017, 13, 4436-4441.	2.3	28
193	Resolving the ultrafast dynamics of the anionic green fluorescent protein chromophore in water. Chemical Science, 2021, 12, 11347-11363.	3.7	28
194	Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models. Journal of Chemical Physics, 2009, 131, 044114.	1.2	27
195	Description of ground and excited electronic states by ensemble density functional method with extended active space. Journal of Chemical Physics, 2017, 147, 064104.	1.2	27
196	Mixed quantum-classical electrodynamics: Understanding spontaneous decay and zero-point energy. Physical Review A, 2018, 97, .	1.0	27
197	<i>Ab Initio</i> Nonadiabatic Molecular Dynamics with Hole–Hole Tamm–Dancoff Approximated Density Functional Theory. Journal of Chemical Theory and Computation, 2020, 16, 5499-5511.	2.3	27
198	Toward fully quantum modelling of ultrafast photodissociation imaging experiments. Treating tunnelling in the ab initio multiple cloning approach. Faraday Discussions, 2016, 194, 81-94.	1.6	26

#	Article	IF	CITATIONS
199	Substituent Effects in Mechanochemical Allowed and Forbidden Cyclobutene Ring-Opening Reactions. Journal of the American Chemical Society, 2021, 143, 3846-3855.	6.6	26
200	Understanding the Mechanochemistry of Ladder-Type Cyclobutane Mechanophores by Single Molecule Force Spectroscopy. Journal of the American Chemical Society, 2021, 143, 12328-12334.	6.6	26
201	Direct Observation of Disrotatory Ring-Opening in Photoexcited Cyclobutene Using ab Initio Molecular Dynamics. Journal of the American Chemical Society, 2000, 122, 6299-6300.	6.6	25
202	Nonadiabatic Photodynamics of Retinal Protonated Schiff Base in Channelrhodopsin 2. Journal of Physical Chemistry Letters, 2019, 10, 2862-2868.	2.1	25
203	Ab Initio Study of Coupled Electron Transfer/Proton Transfer in Cytochrome c Oxidase. Journal of Physical Chemistry A, 2000, 104, 2367-2374.	1.1	24
204	<i>Ab Initio</i> Computation of Rotationally-Averaged Pumpâ€"Probe X-ray and Electron Diffraction Signals. Journal of Chemical Theory and Computation, 2019, 15, 1523-1537.	2.3	24
205	Nonadiabatic Dynamics of Photoexcited <i>cis</i> -Stilbene Using Ab Initio Multiple Spawning. Journal of Physical Chemistry B, 2020, 124, 5476-5487.	1.2	24
206	Self-consistent implementation of ensemble density functional theory method for multiple strongly correlated electron pairs. Journal of Chemical Physics, 2016, 145, 244104.	1.2	23
207	"Balancing―the Block Davidson–Liu Algorithm. Journal of Chemical Theory and Computation, 2016, 12, 3003-3007.	2.3	23
208	Large-Scale Electron Correlation Calculations: Rank-Reduced Full Configuration Interaction. Journal of Chemical Theory and Computation, 2018, 14, 4139-4150.	2.3	23
209	Matter-wave interference of a native polypeptide. Nature Communications, 2020, 11, 1447.	5.8	23
210	Internal conversion of the anionic GFP chromophore: in and out of the I-twisted S ₁ /S ₀ conical intersection seam. Chemical Science, 2022, 13, 373-385.	3.7	23
211	Using the GVB Ansatz to develop ensemble DFT method for describing multiple strongly correlated electron pairs. Physical Chemistry Chemical Physics, 2016, 18, 21040-21050.	1.3	22
212	Performance of Coupled-Cluster Singles and Doubles on Modern Stream Processing Architectures. Journal of Chemical Theory and Computation, 2020, 16, 4021-4028.	2.3	22
213	Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units. Journal of Chemical Physics, 2017, 147, 161723.	1.2	21
214	Diffractive imaging of dissociation and ground-state dynamics in a complex molecule. Physical Review A, 2019, 100, .	1.0	21
215	Putting Photomechanical Switches to Work: An Ab Initio Multiple Spawning Study of Donor–Acceptor Stenhouse Adducts. Journal of Physical Chemistry Letters, 2020, 11, 7901-7907.	2.1	21
216	TeraChem Cloud: A High-Performance Computing Service for Scalable Distributed GPU-Accelerated Electronic Structure Calculations. Journal of Chemical Information and Modeling, 2020, 60, 2126-2137.	2.5	21

#	Article	IF	CITATIONS
217	Dynamical Stereochemistry on Several Electronic States:Â A Computational Study of Na* + H2. Journal of Physical Chemistry A, 1997, 101, 7522-7529.	1.1	20
218	Optimization of Semiempirical Quantum Chemistry Methods via Multiobjective Genetic Algorithms: Accurate Photodynamics for Larger Molecules and Longer Time Scales. Materials and Manufacturing Processes, 2007, 22, 553-561.	2.7	20
219	Steric and electrostatic effects on photoisomerization dynamics using QM/MM ab initio multiple spawning. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	20
220	Efficient Treatment of Large Active Spaces through Multi-GPU Parallel Implementation of Direct Configuration Interaction. Journal of Chemical Theory and Computation, 2020, 16, 1586-1596.	2.3	20
221	ChemPix: automated recognition of hand-drawn hydrocarbon structures using deep learning. Chemical Science, 2021, 12, 10622-10633.	3.7	20
222	Conformer-specific photochemistry imaged in real space and time. Science, 2021, 374, 178-182.	6.0	20
223	The vibrationally adiabatic torsional potential energy surface of trans-stilbene. Chemical Physics Letters, 2007, 440, 7-11.	1.2	19
224	Origin of the Individual Basicity of Corrole NH-Tautomers: A Quantum Chemical Study on Molecular Structure and Dynamics, Kinetics, and Thermodynamics. Journal of Physical Chemistry A, 2015, 119, 6875-6883.	1.1	19
225	Adapting DFT+ <i>U</i> for the Chemically Motivated Correction of Minimal Basis Set Incompleteness. Journal of Physical Chemistry A, 2016, 120, 5939-5949.	1.1	19
226	Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra. Applied Sciences (Switzerland), 2017, 7, 681.	1.3	19
227	Large-Scale Functional Group Symmetry-Adapted Perturbation Theory on Graphical Processing Units. Journal of Chemical Theory and Computation, 2018, 14, 1737-1753.	2.3	19
228	Computational Discovery of the Origins of Life. ACS Central Science, 2019, 5, 1493-1495.	5.3	19
229	Reduced scaling formulation of CASPT2 analytical gradients using the supporting subspace method. Journal of Chemical Physics, 2021, 154, 014103.	1.2	19
230	Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field (SCF) Implementation. Journal of Chemical Theory and Computation, 2009, 5, 3138-3138.	2.3	18
231	Axis-dependence of molecular high harmonic emission in three dimensions. Nature Communications, 2014, 5, 3190.	5.8	18
232	Comparing (stochastic-selection) <i>ab initio</i> multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. Journal of Chemical Physics, 2021, 154, 104110.	1.2	18
233	Unmasking the <i>cis</i> -Stilbene Phantom State via Vacuum Ultraviolet Time-Resolved Photoelectron Spectroscopy and <i>Ab Initio</i> Multiple Spawning. Journal of Physical Chemistry Letters, 2021, 12, 6363-6369.	2.1	18
234	In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society, 2021, 143, 20015-20021.	6.6	18

#	Article	IF	CITATIONS
235	A multi-stage single photochrome system for controlled photoswitching responses. Nature Chemistry, 2022, 14, 942-948.	6.6	18
236	Direct QM/MM simulation of photoexcitation dynamics in bacteriorhodopsin and halorhodopsin. Chemical Physics Letters, 2014, 610-611, 213-218.	1.2	17
237	Efficient implementation of effective core potential integrals and gradients on graphical processing units. Journal of Chemical Physics, 2015, 143, 014114.	1.2	17
238	Relaxation Dynamics of Hydrated Thymine, Thymidine, and Thymidine Monophosphate Probed by Liquid Jet Time-Resolved Photoelectron Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 10676-10684.	1.1	17
239	Reduced scaling extended multi-state CASPT2 (XMS-CASPT2) using supporting subspaces and tensor hyper-contraction. Journal of Chemical Physics, 2020, 152, 234113.	1.2	17
240	Electrostatic Control of Photoisomerization in Channelrhodopsin 2. Journal of the American Chemical Society, 2021, 143, 5425-5437.	6.6	17
241	Ab initio equation-of-motion coupled-cluster molecular dynamics with â€~on-the-fly' diabatization: the doublet-like feature in the photoabsorption spectrum of ethylene. Chemical Physics Letters, 2004, 398, 407-413.	1.2	16
242	Experimental strategies for optical pump – soft x-ray probe experiments at the LCLS. Journal of Physics: Conference Series, 2014, 488, 012015.	0.3	16
243	An <i>ab initio</i> exciton model for singlet fission. Journal of Chemical Physics, 2020, 153, 184116.	1.2	16
244	Nitromethane Decomposition via Automated Reaction Discovery and an <i>Ab Initio</i> Corrected Kinetic Model. Journal of Physical Chemistry A, 2021, 125, 1447-1460.	1.1	16
245	InteraChem: Virtual Reality Visualizer for Reactive Interactive Molecular Dynamics. Journal of Chemical Education, 2021, 98, 3486-3492.	1.1	16
246	Conformationally selective photodissociation dynamics of propanal cation. Journal of Chemical Physics, 2011, 134, 054313.	1.2	15
247	Molecular Origin of Mechanical Sensitivity of the Reaction Rate in Anthracene Cyclophane Isomerization Reveals Structural Motifs for Rational Design of Mechanophores. Journal of Physical Chemistry C, 2016, 120, 17898-17908.	1.5	15
248	Pomeranz–Fritsch Synthesis of Isoquinoline: Gas-Phase Collisional Activation Opens Additional Reaction Pathways. Journal of the American Chemical Society, 2017, 139, 14352-14355.	6.6	15
249	Quantum Chemistry Common Driver and Databases (QCDB) and Quantum Chemistry Engine (QCE <scp>ngine</scp>): Automation and interoperability among computational chemistry programs. Journal of Chemical Physics, 2021, 155, 204801.	1.2	15
250	Rank-reduced coupled-cluster. III. Tensor hypercontraction of the doubles amplitudes. Journal of Chemical Physics, 2022, 156, 054102.	1.2	15
251	High-Performance Computing with Accelerators. Computing in Science and Engineering, 2010, 12, 12-16.	1.2	14
252	Catch and Release: Orbital Symmetry Guided Reaction Dynamics from a Freed "Tension Trapped Transition State― Journal of Organic Chemistry, 2015, 80, 11773-11778.	1.7	14

#	Article	IF	Citations
253	Absorption and Fluorescence Features of an Amphiphilic <i>meso</i> Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2017, 121, 8614-8624.	1.1	14
254	Electronic Energy Funnels in Cisâ^'Trans Photoisomerization of Retinal Protonated Schiff Baseâ€. Journal of Physical Chemistry A, 1998, 102, 9607-9617.	1.1	13
255	Rank reduced coupled cluster theory. II. Equation-of-motion coupled-cluster singles and doubles. Journal of Chemical Physics, 2019, 151, 164121.	1.2	13
256	SSAIMSâ€"Stochastic-Selection ⟨i⟩Ab Initio⟨/i⟩ Multiple Spawning for Efficient Nonadiabatic Molecular Dynamics. Journal of Physical Chemistry A, 2020, 124, 6133-6143.	1.1	13
257	Steric and electronic contributions to the core reactivity of monoprotonated 5-phenylporphyrin: A DFT study. Chemical Physics Letters, 2014, 603, 21-27.	1.2	12
258	Rich Athermal Groundâ€State Chemistry Triggered by Dynamics through a Conical Intersection. Angewandte Chemie, 2016, 128, 15217-15220.	1.6	12
259	Perturbation of Short Hydrogen Bonds in Photoactive Yellow Protein via Noncanonical Amino Acid Incorporation. Journal of Physical Chemistry B, 2019, 123, 4844-4849.	1.2	12
260	Fast transformations between configuration state function and Slater determinant bases for direct configuration interaction. Journal of Chemical Physics, 2020, 152, 164111.	1.2	11
261	Transient resonant Auger–Meitner spectra of photoexcited thymine. Faraday Discussions, 2021, 228, 555-570.	1.6	11
262	Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 12539-12551.	1.2	11
263	Chiral photochemistry of achiral molecules. Nature Communications, 2022, 13, 2091.	5.8	11
264	<i>Ab Initio</i> Multiple Spawning: First Principles Dynamics Around Conical Intersections. Advanced Series in Physical Chemistry, 2011, , 347-374.	1.5	10
265	Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces. Journal of Chemical Physics, 2015, 143, 102601.	1.2	10
266	Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. Journal of Physical Chemistry A, 2018, 122, 9813-9820.	1.1	10
267	Sub-Femtosecond Stark Control of Molecular Photoexcitation with Near Single-Cycle Pulses. Journal of Physical Chemistry Letters, 2019, 10, 742-747.	2.1	10
268	PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. Journal of Chemical Theory and Computation, 2020, 16, 5485-5498.	2.3	10
269	A program for automatically predicting supramolecular aggregates and its application to urea and porphin. Journal of Computational Chemistry, 2018, 39, 763-772.	1.5	9
270	On combining the conductor-like screening model and optimally tuned range-separated hybrid density functionals. Journal of Chemical Physics, 2019, 150, 174117.	1.2	9

#	Article	IF	Citations
271	Pseudospectral correlation methods on distributed memory parallel architectures. Chemical Physics Letters, 1995, 241, 490-496.	1.2	8
272	Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening. Journal of Chemical Physics, 2013, 139, 184309.	1.2	8
273	Photoannealing of Merocyanine Aggregates. Journal of Physical Chemistry A, 2018, 122, 9821-9832.	1.1	8
274	Voice-controlled quantum chemistry. Nature Computational Science, 2021, 1, 42-45.	3.8	8
275	Analytical derivatives of the individual state energies in ensemble density functional theory. II. Implementation on graphical processing units (GPUs). Journal of Chemical Physics, 2021, 154, 104108.	1.2	8
276	Steric and Electronic Origins of Fluorescence in GFP and GFP-like Proteins. Journal of the American Chemical Society, 2022, 144, 12732-12746.	6.6	8
277	Implementation of Scientific Computing Applications on the Cell Broadband Engine. Scientific Programming, 2009, 17, 135-151.	0.5	7
278	Strong, Nonresonant Radiation Enhances <i>Cis</i> à€" <i>Trans</i> Photoisomerization of Stilbene in Solution. Journal of Physical Chemistry A, 2020, 124, 5999-6008.	1.1	7
279	Direct self-consistent field computations on GPU clusters. , 2010, , .		6
280	Communication: A difference density picture for the self-consistent field ansatz. Journal of Chemical Physics, 2016, 144, 131101.	1.2	6
281	The Mechanics of the Bicycle Pedal Photoisomerization in Crystalline <i>ci>cis,cis</i> -1,4-Diphenyl-1,3-butadiene. Journal of Physical Chemistry A, 2020, 124, 8897-8906.	1.1	6
282	Proton Transfer Dynamics in the Aprotic Proton Accepting Solvent 1-Methylimidazole. Journal of Physical Chemistry B, 2020, 124, 7897-7908.	1.2	6
283	GPU acceleration of rank-reduced coupled-cluster singles and doubles. Journal of Chemical Physics, 2021, 155, 184110.	1.2	6
284	Bringing chemical structures to life with augmented reality, machine learning, and quantum chemistry. Journal of Chemical Physics, 2022, 156, .	1.2	6
285	First Principles Dynamics of Photoexcited DNA and RNA Bases. AIP Conference Proceedings, 2007, , .	0.3	5
286	Cover Image, Volume 11, Issue 2. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1523.	6.2	5
287	The Dissociation Catastrophe in Fluctuating-Charge Models and its Implications for the Concept of Atomic Electronegativity. Progress in Theoretical Chemistry and Physics, 2009, , 397-415.	0.2	5
288	Multiobjective genetic algorithms for multiscaling excited state direct dynamics in photochemistry. , 2006, , .		4

#	Article	IF	CITATIONS
289	Porting Optimized GPU Kernels to a Multi-core CPU: Computational Quantum Chemistry Application Example. , 2011, , .		4
290	Pressure-Induced Neutral-to-Ionic Transition in an Amorphous Organic Material. Chemistry of Materials, 2016, 28, 6446-6449.	3.2	4
291	Reaction Dynamics of Cyanohydrins with Hydrosulfide in Water. Journal of Physical Chemistry A, 2019, 123, 7210-7217.	1.1	4
292	Photo-protection/photo-damage in natural systems: general discussion. Faraday Discussions, 2019, 216, 538-563.	1.6	4
293	Electrostatic Influence on Photoisomerization in Bacteriorhodopsin and Halorhodopsin. Journal of Physical Chemistry B, 2019, 123, 4850-4857.	1.2	4
294	Computation of Reaction Mechanisms and Dynamics in Photobiology. Theoretical and Computational Chemistry, 2005, 16, 225-253.	0.2	3
295	A multilayer multi-configurational approach to efficiently simulate large-scale circuit-based quantum computers on classical machines. Journal of Chemical Physics, 2020, 153, 051101.	1.2	3
296	Dynamical Quadrature Grids., 2011,, 35-42.		3
297	Predictions of Pre-edge Features in Time-Resolved Near-Edge X-ray Absorption Fine Structure Spectroscopy from Hole–Hole Tamm–Dancoff-Approximated Density Functional Theory. Journal of Chemical Theory and Computation, 2021, 17, 7120-7133.	2.3	3
298	Dissociative electron attachment to 5-bromo-uracil: non-adiabatic dynamics on complex-valued potential energy surfaces. Physical Chemistry Chemical Physics, 2022, 24, 6845-6855.	1.3	3
299	I <scp>ntera</scp> C <scp>hem</scp> : Exploring Excited States in Virtual Reality with <i>Ab Initio</i> Interactive Molecular Dynamics. Journal of Chemical Theory and Computation, 0, , .	2.3	3
300	JCP Emerging Investigator Special Collection 2019. Journal of Chemical Physics, 2020, 153, 110402.	1.2	2
301	A diagrammatic approach for automatically deriving analytical gradients of tensor hyper-contracted electronic structure methods. Journal of Chemical Physics, 2021, 155, 024108.	1.2	2
302	Chemical physics software. Journal of Chemical Physics, 2021, 155, 010401.	1.2	2
303	Comment on "Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scalingab initioelectronic structure―[J. Chem. Phys. 143, 064103 (2015)]. Journal of Chemical Physics, 2016, 145, 027101.	1.2	1
304	Probing molecular photoinduced dynamics by ultrafast soft x-rays. , 2017, , .		1
305	Strictly non-adiabatic quantum control of the acetylene dication using an infrared field. Journal of Chemical Physics, 2020, 152, 184302.	1.2	1
306	Transient NEXAFS Spectroscopy at the Oxygen Edge: Pinning Down ππ*/nπ* Internal Conversion. , 2016, ,		1

#	Article	IF	CITATIONS
307	2020 JCP Emerging Investigator Special Collection. Journal of Chemical Physics, 2021, 155, 230401.	1.2	1
308	Systematic Improvement on the Classical Molecular Model of Water. Biophysical Journal, 2014, 106, 403a.	0.2	0
309	Photovoltaics and bio-inspired light harvesting: general discussion. Faraday Discussions, 2019, 216, 269-300.	1.6	O
310	Imaging the ring opening reaction of 1,3-cyclohexadiene with MeV ultrafast electron diffraction. EPJ Web of Conferences, 2019, 205, 07006.	0.1	0
311	USING MACHINE LEARNING TO LEARN CHEMISTRY. , 2021, , .		O
312	A Tribute to Emily A. Carter. Journal of Physical Chemistry A, 2021, 125, 1669-1670.	1.1	0
313	A Tribute to Emily A. Carter. Journal of Physical Chemistry C, 2021, 125, 4331-4332.	1.5	O
314	Observation of conformer-specific photochemical dynamics with MeV ultrafast electron diffraction. , 2021, , .		0
315	Nonclassical Phase Space Jumps and Optimal Spawning. Progress in Theoretical Chemistry and Physics, 2009, , 35-45.	0.2	O
316	Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene. , 2014, , .		0
317	Evidence of Hydrogen Migration rather than Isomerization in the Acetylene Dication. , 2016, , .		O