Brian R Mackenzie

List of Publications by Year

 in descending order[^0]
$1 \quad$ Neglected fishery data sources as indicators of preâ€industrial ecological properties of Mediterranean swordfish (<i>Xiphias gladius</i>, Xiphiidae). Fish and Fisheries, 2022, 23, 829-846.

First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning. Scientific Reports, 2022, 12, .

Atlantic bluefin tuna (<i> Thunnus thynnus</i>) in Greenland â€" mixed-stock origin, diet, hydrographic
3 conditions, and repeated catches in this new fringe area. Canadian Journal of Fisheries and Aquatic
Sciences, 2021, 78, 400-408.
Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea. ICES Journal of Marine Science, 2021, 78, 2645-2663.

New historical data for long-term swordfish ecological studies in the Mediterranean Sea. Earth System Science Data, 2021, 13, 5867-5877.

A combination of species distribution and ocean-biogeochemical models suggests that climate change
6 overrides eutrophication as the driver of future distributions of a key benthic crustacean in the
1.2 estuarine ecosystem of the Baltic Sea. ICES Journal of Marine Science, 2020, 77, 2089-2105.

7 Combined climate change and nutrient load impacts on future habitats and eutrophication indicators
in a eutrophic coastal sea. Limnology and Oceanography, 2020, 65, 2170-2187.
1.6

20

Changing fish distributions challenge the effective management of European fisheries. Ecography, 2020, 43, 494-505.

Species richness in North Atlantic fish: Process concealed by pattern. Global Ecology and
Biogeography, 2020, 29, 842-856.

Something old, something new: Historical perspectives provide lessons for blue growth agendas. Fish
10 and Fisheries, 2020, 21, 774-796.
2.7

36

11 Editorial: Seasonal-to-Decadal Prediction of Marine Ecosystems: Opportunities, Approaches, and
Applications. Frontiers in Marine Science, 2019, 6, .

A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Scientific Reports, 2018, 8, 4099.

Productivity and recovery of forage fish under climate change and fishing: North Sea sandeel as a case study. Fisheries Oceanography, 2018, 27, 212-221.

Global patterns in marine predatory fish. Nature Ecology and Evolution, 2018, 2, 65-70.
3.4

51

15 Global biogeochemical provinces of the mesopelagic zone. Journal of Biogeography, 2018, 45, 500-514.
1.4

44

Evidence from the past: exploitation as cause of commercial extinction of autumn-spawning herring in the Gulf of Riga, Baltic Sea. ICES Journal of Marine Science, 2018, 75, 2476-2487.

Temperature-dependent adaptation allows fish to meet their food across their speciesâ $€^{\mathbb{T M}}$ range. Science
Advances, 2018, 4, eaar4349.
4.7

22

Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES Journal of Marine Science,
Lessons from the First Generation of Marine Ecological Forecast Products. Frontiers in Marine
Science, 2017, 4,

24 Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine
Science, 2016, 73, 1272-1282.
1.2

> Multidisciplinary perspectives on the history of human interactions with life in the ocean. ICES
> 25 Journal of Marine Science, 2016, 73, 1382-1385.
ICES meets marine historical ecology: placing the history of fish and fisheries in current policy
context. ICES Journal of Marine Science, 2016, $73,1386-1403$.

Progressive changes in the Western English Channel foster a reorganization in the plankton food

Fishing out collective memory of migratory schools. Journal of the Royal Society Interface, 2014, 11,
.

44 Fisheries: Manage declines. Nature, 2013, 495, 314-314.

45	Comparing reconstructed past variations and future projections of the Baltic Sea ecosystemâ $€^{\prime \prime}$ first results from multi-model ensemble simulations. Environmental Research Letters, 2012, 7, 034005.	2.2	116
46	Impact of Climate Change on Fish Population Dynamics in the Baltic Sea: A Dynamical Downscaling Investigation. Ambio, 2012, 41, 626-636.	2.8	48
47	Spawning of Bluefin Tuna in the Black Sea: Historical Evidence, Environmental Constraints and Population Plasticity. PLoS ONE, 2012, 7, e39998.	1.1	29
48	Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate. , 2011, 21, 214-226.		70
49	Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management. PLoS ONE, 2011, 6, el8997.	1.1	22

Stable Isotope Evidence for Late Medieval (14thâ€"15th C) Origins of the Eastern Baltic Cod (Gadus) Tj ETQq0 00 rgBT /Overlock 10 Tf

$$
\begin{aligned}
& \text { Historical ecology provides new insights for ecosystem management: eastern Baltic cod case study. } \\
& \text { Marine Policy, 2011, 35, 266-270. }
\end{aligned}
$$

1.1

261

Ecological forecasting under climate change: the case of Baltic cod. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2121-2130.
1.2

Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1867-1874.

Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod. ICES Journal of Marine Science, 2010, 67, 833-855.
1.2

Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conservation
Letters, 2009, 2, 26-35.
$2.8 \quad 74$

60 Climate-related Marine Ecosystem Change. , 2008, , 309-377.

Incorporating environmental variability in stock assessment: predicting recruitment, spawner
61 biomass, and landings of sprat (Sprattus sprattus) in the Baltic Sea. Canadian Journal of Fisheries and
$0.7 \quad 35$
Aquatic Sciences, 2008, 65, 1334-1341.
62 Beware the misapplication of results: Response to Cardinale and SvedÃng (2007). Fisheries Research,
2008, 89, 307-308.
$0.9 \quad 0$
Importance of fish biodiversity for the management of fisheries and ecosystems. Fisheries Research,
2008, 90, 6-8.
Reconstructing historical stock development of Atlantic cod (Gadus morhua) in the eastern Baltic
64 Sea before the beginning of intensive exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2728-2741.
The development of the northern European fishery for north Atlantic bluefin tuna Thunnus thynnus
during 1900ấ $€^{" 1} 1950$. Fisheries Research, 2007, 87, 229-239.
0.9

33
0.7

28

Development of international fisheries for the eastern Baltic cod (Gadus morhua) from the late 1880s
66 until 1938. Fisheries Research, 2007, 87, 155-166.
0.9

25

The Danish fish fauna during the warm Atlantic period (ca. 7000â€" 3900 bc): Forerunner of future
$0.9 \quad 71$
67 The Danish fish fauna during the warm Atantic pe

An abundance estimate of ling (Molva molva) and cod (Gadus morhua) in the Skagerrak and the
0.9

22 northeastern North Sea, 1872. Fisheries Research, 2007, 87, 196-207.

Multi-decadal scale variability in the eastern Baltic cod fishery 1550 â $€^{\prime \prime} 1860$ â "'Evidence and causes.
0.9

26
69 Fisheries Research, 2007, 87, 106-119.

Swedish Baltic Sea fisheries during 1868â€"1913: Spatio-temporal dynamics of catch and fishing effort.
Fisheries Research, 2007, 87, 137-145.
for herring, eel, and whitefish in the Limfjord, Denmark. Fisheries Research, 2007, 87, 181-195.

Historical analysis of Pan I in Atlantic cod (Gadus morhua): temporal stability of allele frequencies in
74 the southeastern part of the species distribution. Canadian Journal of Fisheries and Aquatic Sciences,

Individual-based simulations of larval fish feeding in turbulent environments. Marine Ecology -
Progress Series, 2007, 347, 155-169.
Baltic cod recruitment $\hat{\text { â }} €^{\prime \prime}$ the impact of climate variability on key processes. ICES Journal of Marine
Science, 2005, 62, 1408-1425.

83	Spawner-recruit relationships and fish stock carrying capacity in aquatic ecosystems. Marine Ecology - Progress Series, 2003, 248, 209-220.	0.9	26
84	Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Scientia Marina, 2003, 67, 129-154.	0.3	117
85	Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 173-190.	0.7	70
86	Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod: application of a 3-D hydrodynamic model. Journal of Marine Systems, 2002, 32, 281-294.	0.9	26
87	Process-based models of feeding and prey selection in larval fish. Marine Ecology - Progress Series, 2002, 243, 151-164.	0.9	64

Larval fish feeding and turbulence: A case for the downside. Limnology and Oceanography, 2000,
$1-10$.

Turbulence-induced contact rates of plankton:the question of scale. Marine Ecology - Progress
Series, 1998, 166, 307-310.
0.9

29

Eastern Baltic cod:perspectives from existing data on processes affecting growth and survival of eggs and larvae. Marine Ecology - Progress Series, 1996, 134, 265-281.

Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size. Journal of Plankton Research, 1995, 17, 2319-2331.
0.8

70

> 101 Evidence for a domeâ€shaped relationship between turbulence and larval fish ingestion rates.
> Limnology and Oceanography, 1994, 39, 1790-1799.
$1.6 \quad 236$

102 The spatial structure of the physical environment. Oecologia, 1993, 96, 114-121.
0.9

146

103 Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments:
0.9

126
empirical comparisons. Marine Ecology - Progress Series, 1993, 94, 207-216.

Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish
and their zooplankton prey: effects of wind and tide. Marine Ecology - Progress Series, 1991, 73, 149-160.

Estimating larval fish ingestion rates: can laboratory derived values be reliably extrapolated to the
0.9

114
105 wild?. Marine Ecology - Progress Series, 1990, 67, 209-225.
Assessment of temperature effects on interrelationships between stage durations, mortality, and
106 growth in laboratory-reared Homarus americanus Milne Edwards larvae. Journal of Experimental Marine Biology and Ecology, 1988, 116, 87-98.

107 Larval Lobster (Homarus americanus Milne Edwards) Development with Great Salt Lake, Utah and Reference I Strains of Artemia Nauplii. Journal of the World Aquaculture Society, 1987, 18, 6-10.

[^0]: Source: https:/|exaly.com/author-pdf/4692731/publications.pdf
 Version: 2024-02-01

