Brian R Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4692731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	4.7	339
2	Status of Biodiversity in the Baltic Sea. PLoS ONE, 2010, 5, e12467.	1.1	261
3	Evidence for a domeâ€shaped relationship between turbulence and larval fish ingestion rates. Limnology and Oceanography, 1994, 39, 1790-1799.	1.6	236
4	Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science, 2013, 70, 1023-1037.	1.2	230
5	Baltic cod recruitment – the impact of climate variability on key processes. ICES Journal of Marine Science, 2005, 62, 1408-1425.	1.2	204
6	Encounter rates and swimming behavior of pauseâ€ŧravel and cruise larval fish predators in calm and turbulent laboratory environments. Limnology and Oceanography, 1995, 40, 1278-1289.	1.6	171
7	Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology, 2007, 13, 1348-1367.	4.2	165
8	FISH PRODUCTION AND CLIMATE: SPRAT IN THE BALTIC SEA. Ecology, 2004, 85, 784-794.	1.5	150
9	The spatial structure of the physical environment. Oecologia, 1993, 96, 114-121.	0.9	146
10	Quantifying environmental heterogeneity:habitat size necessary for successful development of cod Gadus morhua eggs in the Baltic Sea. Marine Ecology - Progress Series, 2000, 193, 143-156.	0.9	143
11	Daily ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biology, 2007, 13, 1335-1347.	4.2	141
12	Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide. Marine Ecology - Progress Series, 1991, 73, 149-160.	0.9	128
13	Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 2016, 73, 1272-1282.	1.2	126
14	Wind-based models for estimating the dissipation rates of turbulent energy in aquatic environments: empirical comparisons. Marine Ecology - Progress Series, 1993, 94, 207-216.	0.9	126
15	Larval fish feeding and turbulence: A case for the downside. Limnology and Oceanography, 2000, 45, 1-10.	1.6	122
16	Recruitment of Baltic cod and sprat stocks: identification of critical life stages and incorporation of environmental variability into stock-recruitment relationships. Scientia Marina, 2003, 67, 129-154.	0.3	117
17	Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations. Environmental Research Letters, 2012, 7, 034005.	2.2	116
18	Estimating larval fish ingestion rates: can laboratory derived values be reliably extrapolated to the wild?. Marine Ecology - Progress Series, 1990, 67, 209-225.	0.9	114

#	Article	IF	CITATIONS
19	Lessons from the First Generation of Marine Ecological Forecast Products. Frontiers in Marine Science, 2017, 4, .	1.2	113
20	What is the carrying capacity for fish in the ocean? A meta-analysis of population dynamics of North Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 1464-1476.	0.7	111
21	Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web. Global Change Biology, 2013, 19, 3327-3342.	4.2	99
22	Comparative ecology of widely distributed pelagic fish species in the North Atlantic: Implications for modelling climate and fisheries impacts. Progress in Oceanography, 2014, 129, 219-243.	1.5	97
23	Assessment of temperature effects on interrelationships between stage durations, mortality, and growth in laboratory-reared Homarus americanus Milne Edwards larvae. Journal of Experimental Marine Biology and Ecology, 1988, 116, 87-98.	0.7	92
24	Developing Baltic cod recruitment models. II. Incorporation of environmental variability and species interaction. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 1534-1556.	0.7	90
25	Ecological forecasting under climate change: the case of Baltic cod. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2121-2130.	1.2	81
26	A cascade of warming impacts brings bluefin tuna to Greenland waters. Global Change Biology, 2014, 20, 2484-2491.	4.2	78
27	Impending collapse of bluefin tuna in the northeast Atlantic and Mediterranean. Conservation Letters, 2009, 2, 26-35.	2.8	74
28	ICES meets marine historical ecology: placing the history of fish and fisheries in current policy context. ICES Journal of Marine Science, 2016, 73, 1386-1403.	1.2	72
29	The Danish fish fauna during the warm Atlantic period (ca. 7000–3900bc): Forerunner of future changes?. Fisheries Research, 2007, 87, 167-180.	0.9	71
30	Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size. Journal of Plankton Research, 1995, 17, 2319-2331.	0.8	70
31	Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 173-190.	0.7	70
32	Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, fishing, and climate. , 2011, 21, 214-226.		70
33	Turbulence, larval fish ecology and fisheries recruitment: a review of field studies. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2000, 23, 357-375.	0.7	68
34	Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche approach. Progress in Oceanography, 2016, 142, 30-46.	1.5	66
35	Process-based models of feeding and prey selection in larval fish. Marine Ecology - Progress Series, 2002, 243, 151-164.	0.9	64
36	Wind-induced transport of plaice (Pleuronectes platessa) early life-history stages in the Skagerrak-Kattegat. Journal of Sea Research, 1998, 39, 11-28.	0.6	59

#	Article	IF	CITATIONS
37	Changing fish distributions challenge the effective management of European fisheries. Ecography, 2020, 43, 494-505.	2.1	58
38	Eastern Baltic cod:perspectives from existing data on processes affecting growth and survival of eggs and larvae. Marine Ecology - Progress Series, 1996, 134, 265-281.	0.9	57
39	Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecological Applications, 2016, 26, 2021-2032.	1.8	56
40	Stable Isotope Evidence for Late Medieval (14th–15th C) Origins of the Eastern Baltic Cod (Gadus) Tj ETQq0 () 0 ₁₉ BT /C	Overlock 10 Tf
41	Larval trophodynamics, turbulence, and drift on Georges Bank: A sensitivity analysis of Cod and Haddock. Scientia Marina, 2001, 65, 99-115.	0.3	54
42	Global patterns in marine predatory fish. Nature Ecology and Evolution, 2018, 2, 65-70.	3.4	51
43	Fish, Fishing, and Pollutant Reduction in the Baltic Sea. Environmental Science & Technology, 2004, 38, 1970-1976.	4.6	50
44	Impact of Climate Change on Fish Population Dynamics in the Baltic Sea: A Dynamical Downscaling Investigation. Ambio, 2012, 41, 626-636.	2.8	48
45	Environmental Effects on Recruitment and Implications for Biological Reference Points of Eastern Baltic Cod (<i>Gadus morhua</i>). Journal of Northwest Atlantic Fishery Science, 0, 41, 205-220.	1.4	48
46	The development of the northern European fishery for north Atlantic bluefin tuna Thunnus thynnus during 1900–1950. Fisheries Research, 2007, 87, 229-239.	0.9	46
47	Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the northwest Mediterranean Sea. Progress in Oceanography, 2010, 86, 45-58.	1.5	46
48	Global biogeochemical provinces of the mesopelagic zone. Journal of Biogeography, 2018, 45, 500-514.	1.4	44
49	A global mismatch in the protection of multiple marine biodiversity components and ecosystem services. Scientific Reports, 2018, 8, 4099.	1.6	43
50	Long-term sea surface temperature baselines—time series, spatial covariation and implications for biological processes. Journal of Marine Systems, 2007, 68, 405-420.	0.9	39
51	Something old, something new: Historical perspectives provide lessons for blue growth agendas. Fish and Fisheries, 2020, 21, 774-796.	2.7	36
52	Incorporating environmental variability in stock assessment: predicting recruitment, spawner biomass, and landings of sprat (Sprattus sprattus) in the Baltic Sea. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1334-1341.	0.7	35
53	Fishing out collective memory of migratory schools. Journal of the Royal Society Interface, 2014, 11, 20140043.	1.5	35
54	Productivity and recovery of forage fish under climate change and fishing: North Sea sandeel as a case study. Fisheries Oceanography, 2018, 27, 212-221.	0.9	35

#	Article	IF	CITATIONS
55	Historical ecology provides new insights for ecosystem management: eastern Baltic cod case study. Marine Policy, 2011, 35, 266-270.	1.5	34
56	Importance of fish biodiversity for the management of fisheries and ecosystems. Fisheries Research, 2008, 90, 6-8.	0.9	33
57	Could Seals Prevent Cod Recovery in the Baltic Sea?. PLoS ONE, 2011, 6, e18998.	1.1	33
58	Progressive changes in the Western English Channel foster a reorganization in the plankton food web. Progress in Oceanography, 2015, 137, 524-532.	1.5	31
59	Accuracy and precision in the calculation of phenology metrics. Journal of Geophysical Research: Oceans, 2014, 119, 8438-8453.	1.0	30
60	Spawning of Bluefin Tuna in the Black Sea: Historical Evidence, Environmental Constraints and Population Plasticity. PLoS ONE, 2012, 7, e39998.	1.1	29
61	Turbulence-induced contact rates of plankton:the question of scale. Marine Ecology - Progress Series, 1998, 166, 307-310.	0.9	29
62	Variability in growth rates of larval haddock in the northern North Sea. Fisheries Oceanography, 1999, 8, 77-92.	0.9	28
63	Historical analysis of Pan I in Atlantic cod (Gadus morhua): temporal stability of allele frequencies in the southeastern part of the species distribution. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 1448-1455.	0.7	28
64	Reconstructing historical stock development of Atlantic cod (Gadus morhua) in the eastern Baltic Sea before the beginning of intensive exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2728-2741.	0.7	28
65	Hierarchical modelling of temperature and habitat size effects on population dynamics of North Atlantic cod. ICES Journal of Marine Science, 2010, 67, 833-855.	1.2	27
66	Resolving the impact of short-term variations in physical processes impacting on the spawning environment of eastern Baltic cod: application of a 3-D hydrodynamic model. Journal of Marine Systems, 2002, 32, 281-294.	0.9	26
67	Multi-decadal scale variability in the eastern Baltic cod fishery 1550–1860—Evidence and causes. Fisheries Research, 2007, 87, 106-119.	0.9	26
68	A long-term (1667–1860) perspective on impacts of fishing and environmental variability on fisheries for herring, eel, and whitefish in the Limfjord, Denmark. Fisheries Research, 2007, 87, 181-195.	0.9	26
69	Spawner-recruit relationships and fish stock carrying capacity in aquatic ecosystems. Marine Ecology - Progress Series, 2003, 248, 209-220.	0.9	26
70	Development of international fisheries for the eastern Baltic cod (Gadus morhua) from the late 1880s until 1938. Fisheries Research, 2007, 87, 155-166.	0.9	25
71	The migration game in habitat network: the case of tuna. Theoretical Ecology, 2016, 9, 219-232.	0.4	25
72	Productivity responses of a widespread marine piscivore, Gadus morhua , to oceanic thermal extremes and trends. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1867-1874.	1.2	23

#	Article	IF	CITATIONS
73	Has eutrophication promoted forage fish production in the Baltic Sea?. Ambio, 2016, 45, 649-660.	2.8	23
74	Diel variability of feeding activity in haddock (Melanogrammus aeglifinus) larvae in the East Shetland area, North Sea. Marine Biology, 1999, 135, 361-368.	0.7	22
75	An abundance estimate of ling (Molva molva) and cod (Gadus morhua) in the Skagerrak and the northeastern North Sea, 1872. Fisheries Research, 2007, 87, 196-207.	0.9	22
76	Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management. PLoS ONE, 2011, 6, e18997.	1.1	22
77	Explaining life history variation in a changing climate across a species' range. Ecology, 2014, 95, 3364-3375.	1.5	22
78	Temperature-dependent adaptation allows fish to meet their food across their species' range. Science Advances, 2018, 4, eaar4349.	4.7	22
79	Functional responses of North Atlantic fish eggs to increasing temperature. Marine Ecology - Progress Series, 2016, 555, 151-165.	0.9	22
80	Individual-based simulations of larval fish feeding in turbulent environments. Marine Ecology - Progress Series, 2007, 347, 155-169.	0.9	21
81	Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus thynnus L.) during Autumn Migrations to the Iceland Basin. Frontiers in Marine Science, 2016, 3, .	1.2	20
82	Combined climate change and nutrient load impacts on future habitats and eutrophication indicators in a eutrophic coastal sea. Limnology and Oceanography, 2020, 65, 2170-2187.	1.6	20
83	Historical development of fisheries in northern Europe—Reconstructing chronology of interactions between nature and man. Fisheries Research, 2007, 87, 102-105.	0.9	17
84	A life-history evaluation of the impact of maternal effects on recruitment and fisheries reference points. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1113-1120.	0.7	15
85	Trophic impact of Atlantic bluefin tuna migrations in the North Sea. ICES Journal of Marine Science, 2017, 74, 1552-1560.	1.2	14
86	A combination of species distribution and ocean-biogeochemical models suggests that climate change overrides eutrophication as the driver of future distributions of a key benthic crustacean in the estuarine ecosystem of the Baltic Sea. ICES Journal of Marine Science, 2020, 77, 2089-2105.	1.2	14
87	Climateâ€induced response of commercially important flatfish species during the 20th century. Fisheries Oceanography, 2013, 22, 400-408.	0.9	13
88	Adult lifetime reproductive value in fish depends on size and fecundity type. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1405-1412.	0.7	13
89	Swedish Baltic Sea fisheries during 1868–1913: Spatio-temporal dynamics of catch and fishing effort. Fisheries Research, 2007, 87, 137-145.	0.9	12
90	Climate-related Marine Ecosystem Change. , 2008, , 309-377.		12

#	Article	IF	CITATIONS
91	Species richness in North Atlantic fish: Process concealed by pattern. Global Ecology and Biogeography, 2020, 29, 842-856.	2.7	11
92	The development of fisheries at Bornholm, Denmark (Baltic Sea) during 1880s–1914. Fisheries Research, 2007, 87, 146-154.	0.9	10
93	Editorial: Seasonal-to-Decadal Prediction of Marine Ecosystems: Opportunities, Approaches, and Applications. Frontiers in Marine Science, 2019, 6, .	1.2	10
94	Atlantic bluefin tuna (<i>Thunnus thynnus</i>) in Greenland — mixed-stock origin, diet, hydrographic conditions, and repeated catches in this new fringe area. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 400-408.	0.7	10
95	Oceanographic flow regime and fish recruitment: reversed circulation in the North Sea coincides with unusually strong sandeel recruitment. Marine Ecology - Progress Series, 2018, 607, 187-205.	0.9	10
96	Evidence from the past: exploitation as cause of commercial extinction of autumn-spawning herring in the Gulf of Riga, Baltic Sea. ICES Journal of Marine Science, 2018, 75, 2476-2487.	1.2	9
97	Larval Lobster (Homarus americanus Milne Edwards) Development with Great Salt Lake, Utah and Reference I Strains of Artemia Nauplii. Journal of the World Aquaculture Society, 1987, 18, 6-10.	1.2	8
98	First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning. Scientific Reports, 2022, 12, .	1.6	8
99	The spawning of plaice Pleuronectes platessa in the Kattegat. Journal of Sea Research, 2004, 51, 219-228.	0.6	7
100	Use of food web knowledge in environmental conservation and management of living resources in the Baltic Sea. ICES Journal of Marine Science, 2021, 78, 2645-2663.	1.2	6
101	Extending time series of fish biomasses using a Âsimple surplus production-based approach. Marine Ecology - Progress Series, 2011, 440, 191-202.	0.9	6
102	Multidisciplinary perspectives on the history of human interactions with life in the ocean. ICES Journal of Marine Science, 2016, 73, 1382-1385.	1.2	4
103	Spatially explicit estimates of stock sizes, structure and biomass of herring and blue whiting, and catch data of bluefin tuna. Earth System Science Data, 2015, 7, 35-46.	3.7	4
104	ICES and PICES Strategies for Coordinating Research on the Impacts of Climate Change on Marine Ecosystems. Oceanography, 2014, 27, 160-167.	0.5	3
105	Neglected fishery data sources as indicators of preâ€industrial ecological properties of Mediterranean swordfish (<i>Xiphias gladius</i> , Xiphiidae). Fish and Fisheries, 2022, 23, 829-846.	2.7	2
106	New historical data for long-term swordfish ecological studies in the Mediterranean Sea. Earth System Science Data, 2021, 13, 5867-5877.	3.7	1
107	Beware the misapplication of results: Response to Cardinale and SvedÃ ¤ g (2007). Fisheries Research, 2008, 89, 307-308.	0.9	0
108	Fisheries: Manage declines. Nature, 2013, 495, 314-314.	13.7	0