
Ä¹/₂ubomÃ-r Kopera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4692699/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water ice-cooled MgB ₂ coil made by wind and react process. Superconductor Science and Technology, 2022, 35, 055001.	1.8	4
2	Behaviour of Al ₂ O ₃ -oxide insulated and non-insulated superconducting MgB ₂ coils cooled by water ice. Superconductor Science and Technology, 2022, 35, 095007.	1.8	1
3	Lowâ€purity Cu and Al sheathed multiâ€core MgB2 wires made by IMD process. Superconductor Science and Technology, 2021, 34, 075010.	1.8	4
4	Longitudinal uniformity of MgB2 wires made by an internal magnesium diffusion process. Superconductor Science and Technology, 2021, 34, 095007.	1.8	3
5	I-V characteristics of MgB2 conductors with different metallic sheaths. Cryogenics, 2021, 120, 103370.	0.9	2
6	MgB ₂ cables made of thin wires manufactured by IMD process. Superconductor Science and Technology, 2020, 33, 085004.	1.8	7
7	Structure and properties of barrier-free MgB2 composite wires made by internal magnesium diffusion process. Journal of Alloys and Compounds, 2020, 829, 154543.	2.8	14
8	Small diameter wind and react coil made of anodised Al-sheathed MgB ₂ wire. Superconductor Science and Technology, 2019, 32, 105003.	1.8	5
9	Impact of a REBCO coated conductor stabilization layer on the fault current limiting functionality. Superconductor Science and Technology, 2019, 32, 095008.	1.8	19
10	Comparison of interfacial and critical current behaviour of Al+Al2O3 sheathed MgB2 wires with Ta and Ti diffusion barriers. Journal of Alloys and Compounds, 2019, 807, 151665.	2.8	3
11	Thermal conductivities and thermal runaways of superconducting MgB2 wires stabilized by an Al + Al2O3 sheath. Superconductor Science and Technology, 2019, 32, 115007.	1.8	1
12	Current densities and strain tolerances of filamentary MgB ₂ wires made by an internal Mg diffusion process. Superconductor Science and Technology, 2019, 32, 095006.	1.8	1
13	Strong no-barrier SS sheathed MgB2 composite wire. Physica C: Superconductivity and Its Applications, 2019, 560, 40-44.	0.6	4
14	Quench dynamics in MgB2Rutherford cables. Superconductor Science and Technology, 2018, 31, 045009.	1.8	5
15	AC losses of Rutherford MgB ₂ cables made by powder-in-tube and internal magnesium diffusion processes. Superconductor Science and Technology, 2018, 31, 125014.	1.8	7
16	Lightweight MgB2 wires with a high temperature aluminum sheath made of variable purity Al powder and Al2O3 content. Superconductor Science and Technology, 2018, 31, 085003.	1.8	7
17	HITEMAL-an outer sheath material for MgB2 superconductor wires: The effect of annealing at 595–655 °C on the microstructure and properties. Materials and Design, 2018, 157, 12-23.	3.3	14
18	Rutherford cable made of internal magnesium diffusion MgB2wires sheathed with Al-Al2O3particulate metal matrix composite. Superconductor Science and Technology, 2018, 31, 015015.	1.8	3

Ä1⁄2ubomÃr Kopera

#	Article	IF	CITATIONS
19	Ultra-lightweight superconducting wire based on Mg, B, Ti and Al. Scientific Reports, 2018, 8, 11229.	1.6	19
20	Multi-core MgB2 wire with a Ti barrier and a reinforced Al+Al2O3 sheath. Superconductor Science and Technology, 2018, 31, 095006.	1.8	5
21	Microstructure of undoped and C-doped MgB2 wires prepared by an internal magnesium diffusion technique using different B powders. Journal of Alloys and Compounds, 2018, 764, 437-445.	2.8	6
22	Filamentary MgB2wires manufactured by different processes subjected to tensile loading and unloading. Superconductor Science and Technology, 2017, 30, 065006.	1.8	3
23	Critical currents of Rutherford MgB ₂ cables compacted by two-axial rolling. Superconductor Science and Technology, 2017, 30, 015002.	1.8	15
24	Lightweight Al-stabilized MgB2conductor made by the IMD process. Superconductor Science and Technology, 2017, 30, 115001.	1.8	6
25	Properties of near- and sub-micrometre Al matrix composites strengthened with nano-scale in-situ Al 2 O 3 aimed for low temperature applications. Cryogenics, 2017, 87, 58-65.	0.9	18
26	Superconducting MgB ₂ wires with vanadium diffusion barrier. Superconductor Science and Technology, 2017, 30, 105008.	1.8	2
27	Bending strain tolerance of MgB2superconducting wires. Superconductor Science and Technology, 2016, 29, 045002.	1.8	9
28	Fast creation of dense MgB ₂ phase in wires made by IMD process. Superconductor Science and Technology, 2016, 29, 10LT01.	1.8	9
29	Filamentary MgB ₂ Wires With Low Magnetization AC Losses. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.1	5
30	MgB2 wires with Ti and NbTi barrier made by IMD process. Cryogenics, 2016, 79, 74-78.	0.9	5
31	Effect of cold isostatic pressing on the transport current of filamentary MgB2wire made by the IMD process. Superconductor Science and Technology, 2016, 29, 075004.	1.8	7
32	Electromechanical properties of iron and silver sheathed Sr _{0.6} K _{0.4} Fe ₂ As ₂ tapes. Superconductor Science and Technology, 2015, 28, 035007.	1.8	16
33	Tensile and Bending Strain Tolerance of <italic>Ex Situ</italic> MgB ₂ /Ni/Cu Superconductor Tape. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-7.	1.1	18
34	Properties of MgB ₂ wires made by internal magnesium diffusion into different boron powders. Superconductor Science and Technology, 2015, 28, 095014.	1.8	8
35	Critical currents, <i>I</i> _c -anisotropy and stress tolerance of MgB ₂ wires made by internal magnesium diffusion. Superconductor Science and Technology, 2014, 27, 065003.	1.8	26
36	The roles of CHPD: superior critical current density and <i>n</i> -value obtained in binary <i>in situ</i> MgB ₂ cables. Superconductor Science and Technology, 2014, 27, 095016.	1.8	14

Ä1⁄2ubomÃr Kopera

#	Article	IF	CITATIONS
37	Electronic transport in composites of graphite oxide with carbon nanotubes. Carbon, 2014, 72, 224-232.	5.4	22
38	Electro-mechanical behaviour of in situ W added MgB2 wire. Cryogenics, 2014, 60, 5-8.	0.9	4
39	Filamentary MgB2 Superconductors with Titanium Barriers. Journal of Superconductivity and Novel Magnetism, 2013, 26, 2109-2114.	0.8	8
40	Properties of <i>in situ</i> made MgB ₂ in Nb or Ti sheath. Superconductor Science and Technology, 2013, 26, 025007.	1.8	7
41	Rutherford cable made of single-core MgB ₂ wires. Superconductor Science and Technology, 2013, 26, 125007.	1.8	19
42	Composition changes in thin-filament MgB2/Ti/GlidCop® wires heat treated at variable periods. Journal of Alloys and Compounds, 2013, 572, 25-30.	2.8	2
43	Behaviour of filamentary MgB2wires subjected to tensile stress at 4.2 K. Superconductor Science and Technology, 2013, 26, 105028.	1.8	13
44	Electromechanical Properties of Filamentary \$ hbox{MgB}_{2}\$ Wires. IEEE Transactions on Applied Superconductivity, 2012, 22, 8400106-8400106.	1.1	19
45	Calculated and measured normal state resistivity of 19-filament MgB2/Ti/Cu/stainless steel wire. Superconductor Science and Technology, 2012, 25, 025021.	1.8	6
46	Selected properties of GlidCop®sheathed MgB2wires. Superconductor Science and Technology, 2012, 25, 095008.	1.8	6
47	Magnesium Diboride Wires With Nonmagnetic Matrices—AC Loss Measurements and Numerical Calculations. IEEE Transactions on Applied Superconductivity, 2011, 21, 3338-3341.	1.1	17
48	Filamentary MgB2wires twisted before and after heat treatment. Superconductor Science and Technology, 2011, 24, 115006.	1.8	9
49	Current densities of thin filament MgB ₂ <i>/</i> Ti <i>/</i> GlidCop [®] wire. Superconductor Science and Technology, 2011, 24, 105006.	1.8	3
50	EDX and ion beam treatment studies of filamentary in situ MgB2 wires with Ti barrier. Journal of Alloys and Compounds, 2011, 509, 7961-7967.	2.8	9
51	Thermally stabilized MgB2 composite wires with different barriers. Cryogenics, 2011, 51, 550-554.	0.9	17
52	AC losses and transverse resistivity in filamentary MgB2 tape with Ti barriers. Physica C: Superconductivity and Its Applications, 2011, 471, 389-394.	0.6	14
53	Stability of multi-core MgB2/Ti/Cu/SS wires. Cryogenics, 2011, 51, 16-20.	0.9	11
54	Fine-filamentary <i>in situ</i> MgB ₂ wires. Superconductor Science and Technology, 2010, 23, 105006.	1.8	12

Ĺ⁄2ubomÃr Kopera

#	Article	IF	CITATIONS
55	Cu stabilized MgB2composite wire with an NbTi barrier. Superconductor Science and Technology, 2010, 23, 025014.	1.8	17
56	Stainless steel reinforced multi-core MgB2wire subjected to variable deformations, heat treatments and mechanical stressing. Superconductor Science and Technology, 2010, 23, 065010.	1.8	28
57	Progress in electrical and mechanical properties of rectangular MgB2wires. Superconductor Science and Technology, 2009, 22, 075026.	1.8	16
58	Transport current densities of MgB2 wire, cable and continually transposed conductor. Cryogenics, 2009, 49, 366-370.	0.9	31
59	In situ patterning of filamentary YBCO coated conductors. Physica C: Superconductivity and Its Applications, 2008, 468, 2351-2355.	0.6	10
60	Electromechanical characterization of selected superconductors. Superconductor Science and Technology, 2008, 21, 115001.	1.8	22
61	Compact Design of Cryogen-Free HTS Magnet for Laboratory Use. IEEE Transactions on Applied Superconductivity, 2006, 16, 1415-1418.	1.1	8
62	Variation of vortex structure characteristics of Bi-2223/Ag superconducting tapes with respect to applied magnetic field direction. Physica C: Superconductivity and Its Applications, 2005, 426-431, 396-401.	0.6	3
63	Comparison and analysis of Hall probe scanning, magneto-optical imaging and magnetic knife measurements of Bi-2223/Ag tape. Superconductor Science and Technology, 2005, 18, 805-812.	1.8	12
64	The design and performance of a Bi-2223/Ag magnet cooled by a single-stage cryocooler. Superconductor Science and Technology, 2005, 18, 977-984.	1.8	10
65	Electrical and mechanical properties of Bi-2223/Ag tapes made by TIRT technique. Physica C: Superconductivity and Its Applications, 2002, 372-376, 891-894.	0.6	1
66	Transversal and longitudinal current distribution in Bi-2223/Ag tapes with high filament aspect ratio. Physica C: Superconductivity and Its Applications, 2002, 372-376, 916-918.	0.6	5
67	Material for resistive barriers in Bi-2223/Ag tapes. Superconductor Science and Technology, 2001, 14, 966-972.	1.8	7
68	Fe/Cr sensor for the milliKelvin temperature range. Sensors and Actuators A: Physical, 2001, 91, 177-179.	2.0	1
69	Currents in series and parallel connections of small inner bore coils wound from Bi(2223)/Ag tapes and treated by the wind and react technique. Superconductor Science and Technology, 1999, 12, 507-513.	1.8	4
70	New rolling technique for texturing of Bi(2223)/Ag tapes. Superconductor Science and Technology, 1998, 11, 433-436.	1.8	29
71	Application of two-axial rolling for multicore Bi(2223)/Ag tapes. Superconductor Science and Technology, 1997, 10, 982-986.	1.8	44
72	Sample holder for measuring of -anisotropy in high magnetic fields. Superconductor Science and Technology, 1997, 10, 995-997.	1.8	6

#	Article	IF	CITATIONS
73	Study of BSCCO core density in multicore Ag sheathed tapes by microhardness profiles. Superconductor Science and Technology, 1996, 9, 1066-1070.	1.8	22
74	Bending of Bi(2223) - Ag tapes at 77 and 300 K. Superconductor Science and Technology, 1996, 9, 792-795.	1.8	25
75	Ic anisotropy in flattened Nb3Sn superconductors and possible ways for overcoming it. Cryogenics, 1995, 35, 83-86.	0.9	10
76	Microhardness profiles in BSCCO/Ag composites made by various technological steps. Superconductor Science and Technology, 1995, 8, 617-625.	1.8	44