Simranjit K Sidhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4692639/publications.pdf

Version: 2024-02-01

361296 377752 1,337 39 20 34 citations h-index g-index papers 42 42 42 1239 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. European Journal of Applied Physiology, 2022, 122, 169-184.	1.2	2
2	Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD. Journal of Applied Physiology, 2021, 130, 69-79.	1.2	8
3	Single joint fatiguing exercise decreases long but not short–interval intracortical inhibition in older adults. Experimental Brain Research, 2021, 239, 47-58.	0.7	4
4	Remote muscle priming anodal transcranial direct current stimulation attenuates short interval intracortical inhibition and increases time to task failure of a constant workload cycling exercise. Experimental Brain Research, 2021, 239, 1975-1985.	0.7	2
5	Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R687-R698.	0.9	3
6	Submaximal isometric fatiguing exercise of the elbow flexors has no age-related effect on GABAB mediated inhibition. Journal of Applied Physiology, 2021, , .	1.2	1
7	Preconditioning cathodal transcranial direct current stimulation facilitates the neuroplastic effect of subsequent anodal transcranial direct current stimulation applied during cycling in young adults. Neuroscience Letters, 2020, 714, 134597.	1.0	4
8	Older Adults Differentially Modulate Transcranial Magnetic Stimulation–Electroencephalography Measures of Cortical Inhibition during Maximal Single-joint Exercise. Neuroscience, 2020, 425, 181-193.	1.1	9
9	TMS coil orientation and muscle activation influence lower limb intracortical excitability. Brain Research, 2020, 1746, 147027.	1.1	9
10	Freely Chosen Cadence During Cycling Attenuates Intracortical Inhibition and Increases Intracortical Facilitation Compared to a Similar Fixed Cadence. Neuroscience, 2020, 441, 93-101.	1.1	2
11	Exercise Pressor Reflex Contributes to the Cardiovascular Abnormalities Characterizing. Hypertension, 2019, 74, 1468-1475.	1.3	15
12	Intermittent single-joint fatiguing exercise reduces TMS-EEG measures of cortical inhibition. Journal of Neurophysiology, 2019, 121, 471-479.	0.9	20
13	Cortical inhibition assessed using paired-pulse TMS-EEG is increased in older adults. Brain Stimulation, 2018, 11, 545-557.	0.7	28
14	Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Medicine and Science in Sports and Exercise, 2018, 50, 2409-2417.	0.2	34
15	Impact of age on the development of fatigue during large and small muscle mass exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R741-R750.	0.9	14
16	Fatigueâ€related group III/IV muscle afferent feedback facilitates intracortical inhibition during locomotor exercise. Journal of Physiology, 2018, 596, 4789-4801.	1.3	64
17	Increasing motor cortex plasticity with spaced paired associative stimulation at different intervals in older adults. European Journal of Neuroscience, 2017, 46, 2674-2683.	1.2	10
18	Fatigue Modulates The Effect Of Group III/IV Muscle Afferents On GABAB-Mediated Inhibition And Corticospinal Excitability. Medicine and Science in Sports and Exercise, 2017, 49, 695.	0.2	0

#	Article	IF	CITATIONS
19	Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise. Clinical Neurophysiology, 2017, 128, 44-55.	0.7	92
20	Role of carbohydrate in central fatigue: a systematic review. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 376-384.	1.3	21
21	Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. Journal of Physiology, 2016, 594, 5303-5315.	1.3	127
22	Fatigue diminishes motoneuronal excitability during cycling exercise. Journal of Neurophysiology, 2016, 116, 1743-1751.	0.9	39
23	Lifelong strength training mitigates the age-related decline in efferent drive. Journal of Applied Physiology, 2016, 121, 415-423.	1.2	36
24	Ascorbate Attenuates the Development of Fatigue During Exercise in Patients with Chronic Obstructive Pulmonary Disease. Medicine and Science in Sports and Exercise, 2016, 48, 284.	0.2	0
25	Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H1479-H1489.	1.5	30
26	Group III/IV Mediated Muscle Reflexes Restrain Vascular Conductance During Exercise In Patients With Hypertension. Medicine and Science in Sports and Exercise, 2015, 47, 418.	0.2	0
27	Group III/IV Muscle Afferents Restrict Intramuscular Metabolic Perturbation In Exercising Humans. Medicine and Science in Sports and Exercise, 2015, 47, 329.	0.2	0
28	Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R998-R1007.	0.9	37
29	Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Autonomic Neuroscience: Basic and Clinical, 2015, 188, 19-23.	1.4	134
30	The Development of Peripheral and Central Fatigue During Self-Paced Endurance Exercise. Medicine and Science in Sports and Exercise, 2015, 47, 327-328.	0.2	0
31	Corticospinal modulation induced by sounds depends on action preparedness. Journal of Physiology, 2014, 592, 153-169.	1.3	55
32	Spinal μâ€opioid receptorâ€sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle. Journal of Physiology, 2014, 592, 5011-5024.	1.3	94
33	Shortâ€interval intracortical inhibition in knee extensors during locomotor cycling. Acta Physiologica, 2013, 207, 194-201.	1.8	33
34	Corticospinal Responses to Sustained Locomotor Exercises: Moving Beyond Single-Joint Studies of Central Fatigue. Sports Medicine, 2013, 43, 437-449.	3.1	54
35	Sustained Cycling Exercise Increases Intracortical Inhibition. Medicine and Science in Sports and Exercise, 2013, 45, 654-662.	0.2	34
36	Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion. Journal of Applied Physiology, 2012, 113, 401-409.	1.2	57

3

#	Article	IF	CITATIONS
37	Corticospinal contributions to lower limb muscle activity during cycling in humans. Journal of Neurophysiology, 2012, 107, 306-314.	0.9	53
38	Cortical voluntary activation of the human knee extensors can be reliably estimated using transcranial magnetic stimulation. Muscle and Nerve, 2009, 39, 186-196.	1.0	108
39	Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles. Journal of Applied Physiology, 2009, 106, 556-565.	1.2	104