Nancy S Krieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/469222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of acid on bone. Kidney International, 2022, 101, 1160-1170.	2.6	17
2	Kidney stone formation and the gut microbiome are altered by antibiotics in genetic hypercalciuric stone-forming rats. Urolithiasis, 2021, 49, 185-193.	1.2	2
3	Deletion of the proton receptor OCR1 in mouse osteoclasts impairs metabolic acidosis-induced bone resorption. Kidney International, 2021, 99, 609-619.	2.6	15
4	Chlorthalidone with potassium citrate decreases calcium oxalate stones and increases bone quality in genetic hypercalciuric stone-forming rats. Kidney International, 2021, 99, 1118-1126.	2.6	6
5	Metabolic acidosis regulates RGS16 and G protein signaling in osteoblasts. American Journal of Physiology - Renal Physiology, 2021, 321, F424-F430.	1.3	6
6	Increased Osteoclast and Decreased Osteoblast Activity Causes Reduced Bone Mineral Density and Quality in Genetic Hypercalciuric Stoneâ€Forming Rats. JBMR Plus, 2020, 4, e10350.	1.3	3
7	Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats. Journal of the American Society of Nephrology: JASN, 2019, 30, 1163-1173.	3.0	11
8	Low Sodium Diet Decreases Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron, 2019, 142, 147-158.	0.9	2
9	Stimulation of fibroblast growth factor 23 by metabolic acidosis requires osteoblastic intracellular calcium signaling and prostaglandin synthesis. American Journal of Physiology - Renal Physiology, 2017, 313, F882-F886.	1.3	11
10	Increased bone density in mice lacking the proton receptor OGR1. Kidney International, 2016, 89, 565-573.	2.6	39
11	Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	1.0	11
12	Acid–Base Balance and Bone Health. , 2015, , 335-357.		3
13	Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria. Journal of the American Society of Nephrology: JASN, 2015, 26, 3001-3008.	3.0	49
14	1,25(OH)2D3 Induces a Mineralization Defect and Loss of Bone Mineral Density in Genetic Hypercalciuric Stone-Forming Rats. Calcified Tissue International, 2014, 94, 531-543.	1.5	15
15	Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet. American Journal of Physiology - Renal Physiology, 2014, 306, F1081-F1087.	1.3	8
16	The Relation Between Bone and Stone Formation. Calcified Tissue International, 2013, 93, 374-381.	1.5	21
17	1,25(OH) ₂ D ₃ -enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. American Journal of Physiology - Renal Physiology, 2013, 305, F1132-F1138.	1.3	21
18	Increased biological response to 1,25(OH) ₂ D ₃ in genetic hypercalciuric stone-forming rats. American Journal of Physiology - Renal Physiology, 2013, 304, F718-F726.	1.3	28

NANCY S KRIEGER

#	Article	IF	CITATIONS
19	Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. American Journal of Physiology - Renal Physiology, 2012, 303, F431-F436.	1.3	54
20	Renal Diseases and Bone: Emerging Therapeutics. , 2012, , 163-177.		0
21	Pharmacological inhibition of intracellular calcium release blocks acid-induced bone resorption. American Journal of Physiology - Renal Physiology, 2011, 300, F91-F97.	1.3	20
22	Metabolic Acidosis Increases Intracellular Calcium in Bone Cells Through Activation of the Proton Receptor OGR1. Journal of Bone and Mineral Research, 2009, 24, 305-313.	3.1	67
23	Regulation of COX-2 Mediates Acid-Induced Bone Calcium Efflux in Vitro. Journal of Bone and Mineral Research, 2007, 22, 907-917.	3.1	40
24	Mechanism of acid-induced bone resorption. Current Opinion in Nephrology and Hypertension, 2004, 13, 423-436.	1.0	204
25	RENAL RESEARCH INSTITUTE SYMPOSIUM: Cellular Mechanisms of Bone Resorption Induced by Metabolic Acidosis. Seminars in Dialysis, 2003, 16, 463-466.	0.7	29
26	Cortisol Inhibits Acid-Induced Bone Resorption In Vitro. Journal of the American Society of Nephrology: JASN, 2002, 13, 2534-2539.	3.0	16
27	Metabolic, but not respiratory, acidosis increases bone PGE ₂ levels and calcium release. American Journal of Physiology - Renal Physiology, 2001, 281, F1058-F1066.	1.3	65
28	Prostaglandins regulate acid-induced cell-mediated bone resorption. American Journal of Physiology - Renal Physiology, 2000, 279, F1077-F1082.	1.3	47
29	Alendronate decreases urine calcium and supersaturation in genetic hypercalciuric rats. Kidney International, 1999, 55, 234-243.	2.6	88
30	Osteoblastic intracellular pH and calcium in metabolic and respiratory acidosis. Kidney International, 1995, 47, 1790-1796.	2.6	20
31	Greater inhibition of in vitro bone mineralization with metabolic than respiratory acidosis. Kidney International, 1994, 46, 1199-1206.	2.6	47
32	Hormonal regulation of Na+-Ca2+ exchange in osteoblast-like cells. Journal of Bone and Mineral Research, 1994, 9, 1159-1166.	3.1	18
33	Demonstration of sodium/calcium exchange in rodent osteoblasts. Journal of Bone and Mineral Research, 1992, 7, 1105-1111.	3.1	22
34	Mechanism of amphotericin B stimulation of net calcium efflux from neonatal mouse calvariae. Journal of Bone and Mineral Research, 1990, 5, 725-732.	3.1	2
35	Differential effects of parathyroid hormone on protein phosphorylation in two osteoblastlike cell populations isolated from neonatal mouse calvaria. Calcified Tissue International, 1989, 44, 192-199.	1.5	27