
Dechao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4692021/publications.pdf Version: 2024-02-01

DECHAO WANC

#	Article	IF	CITATIONS
1	Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis, 2017, 126, 169-179.	5.5	180
2	Fast co-pyrolysis of a massive Naomaohu coal and cedar mixture using rapid infrared heating. Energy Conversion and Management, 2020, 205, 112442.	9.2	50
3	Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Interfaces, 2021, 13, 8507-8517.	8.0	49
4	Effect of reducibility of transition metal oxides on in-situ oxidative catalytic cracking of tar. Energy Conversion and Management, 2019, 197, 111871.	9.2	43
5	Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 26954-26965.	10.3	41
6	Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites. Fuel, 2020, 259, 116234.	6.4	40
7	A Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting Highâ€Performance Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2000585.	14.9	37
8	Partial oxidation of vacuum residue over Al and Zr-doped α-Fe2O3 catalysts. Fuel, 2017, 210, 803-810.	6.4	32
9	Effect of different acid-leached USY zeolites on in-situ catalytic upgrading of lignite tar. Fuel, 2020, 266, 117089.	6.4	32
10	Catalytic fast pyrolysis of cellulose over Ce0.8Zr0.2-xAlxO2 catalysts to produce aromatic hydrocarbons: Analytical Py-GCÂ×ÂGC/MS. Fuel Processing Technology, 2020, 205, 106438.	7.2	31
11	Facile Preparation of Low-Cost and Cross-Linked Carbon Nanofibers Derived from PAN/PMMA/Lignin as Supercapacitor Electrodes. Energy & Fuels, 2021, 35, 796-805.	5.1	29
12	Integrated process for partial oxidation of heavy oil and in-situ reduction of red mud. Applied Catalysis B: Environmental, 2019, 258, 117944.	20.2	28
13	Upgrading of vacuum residue with chemical looping partial oxidation over Ce doped Fe2O3. Energy, 2018, 162, 542-553.	8.8	27
14	Upgrading of vacuum residue with chemical looping partial oxidation over Fe-Mn mixed metal oxides. Fuel, 2019, 239, 764-773.	6.4	24
15	Catalytic copyrolysis of metal impregnated biomass and plastic with Niâ€based HZSMâ€5 catalyst: Synergistic effects, kinetics and product distribution. International Journal of Energy Research, 2020, 44, 5917-5935.	4.5	23
16	One-step hydrotreatment of inedible oil for production the second-generation biofuel over Pt-Sn/SAPO-11 catalyst. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105121.	5.5	22
17	Efficient ex-situ catalytic upgrading of biomass pyrolysis vapors to produce methylfurans and phenol over bio-based activated carbon. Biomass and Bioenergy, 2020, 142, 105794.	5.7	21
18	Co-pyrolysis of Baiyinhua lignite and pine in an infrared-heated fixed bed to improve tar yield. Fuel, 2020, 272, 117739.	6.4	21

DECHAO WANG

#	Article	IF	CITATIONS
19	Enhanced production of light tar from integrated process of in-situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y. Fuel, 2020, 279, 118533.	6.4	20
20	Catalytic upgrading of lignocellulosic biomass pyrolysis vapors: Insights into physicochemical changes in ZSM-5. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105123.	5.5	20
21	Selective production of alkanes and fatty alcohol via hydrodeoxygenation of palmitic acid over red mud-supported nickel catalysts. Fuel, 2022, 314, 122780.	6.4	19
22	Integrated process of coal tar upgrading and in-situ reduction of Fe2O3. Fuel Processing Technology, 2019, 191, 20-28.	7.2	18
23	Production of diesel-like hydrocarbons via hydrodeoxygenation of palmitic acid over Ni/TS-1 catalyst. Biomass and Bioenergy, 2021, 149, 106081.	5.7	17
24	Reagent-assisted hydrothermal synthesis of NiCo ₂ O ₄ nanomaterials as electrodes for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2021, 45, 9230-9242.	2.8	16
25	Integrated coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3 to improve tar yield. Fuel, 2020, 266, 117092.	6.4	15
26	Synthesis and Thermal Properties of Resorcinol–Furfural Thermosetting Resin. ACS Omega, 2020, 5, 10011-10020.	3.5	14
27	Co-pyrolysis behaviors of low-rank coal and polystyrene with in-situ pyrolysis time-of-flight mass spectrometry. Fuel, 2021, 286, 119461.	6.4	14
28	Bi-Doped Ceria as a Highly Efficient Catalyst for Soot Combustion: Improved Mobility of Lattice Oxygen in CexBi1–xOy Catalysts. Energy & Fuels, 2020, 34, 9932-9939.	5.1	13
29	Enhancing Lithium-Storage Performance via Graphdiyne/Graphene Interface by Self-Supporting Framework Synthesized. ACS Applied Materials & Interfaces, 2021, 13, 34332-34340.	8.0	13
30	A new method for long-chain alkanes under a condition without extra hydrogen source: Catalytic upgrading of cellulose pyrolysis vapors over Au/TS-1 catalyst. Journal of Analytical and Applied Pyrolysis, 2020, 151, 104906.	5.5	11
31	Oxidative Catalytic Cracking and Reforming of Coal Pyrolysis Volatiles over NiO. Energy & Fuels, 2020, 34, 6928-6937.	5.1	11
32	Improving the thermal and mechanical properties of phenolic fiber over boron modified high-ortho phenolic resin. High Performance Polymers, 2021, 33, 587-597.	1.8	10
33	Optimization of key parameters using RSM for improving the production of the green biodiesel from FAME by hydrotreatment over Pt/SAPO-11. Biomass and Bioenergy, 2022, 158, 106379.	5.7	10
34	Boosting the selectivity of aromatic hydrocarbons via ex-situ catalytic fast pyrolysis of cellulose over Pt–Sn–Ce/γ-Al2O3 catalyst. Journal of the Energy Institute, 2021, 98, 144-152.	5.3	9
35	Preparation of high molecular weight thermoplastic bio-based phenolic resin and fiber based on lignin liquefaction. Materials Research Express, 2021, 8, 015308.	1.6	8
36	Steam catalytic cracking of coal tar over iron ontaining mixed metal oxides. Canadian Journal of Chemical Engineering, 2019, 97, 702-708.	1.7	7

DECHAO WANG

#	Article	IF	Citations
37	Catalytic pyrolysis of cellulose over solid acidic catalysts: an environment-friendly method for furan production. Biomass Conversion and Biorefinery, 2021, 11, 2695-2702.	4.6	7
38	Upgrading of Heavy Oil with Chemical Looping Partial Oxidation over M ²⁺ Doped Fe ₂ O ₃ . Energy & Fuels, 2019, 33, 257-265.	5.1	6
39	Catalytic Pyrolysis Vapor Upgrading of Corncob into Furans over Pyrolysis-Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry: Significance of Catalyst and Temperature. Bioenergy Research, 2020, 13, 1180-1193.	3.9	6
40	In‣itu Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al ₂ O ₃ Catalysts. ChemistrySelect, 2020, 5, 4905-4912.	1.5	6
41	Oneâ€Dimensional Spinel Transition Bimetallic Oxide Composite Carbon Nanofibers (CoFe ₂ O ₄ @CNFs) for Asymmetric Supercapacitors. ChemElectroChem, 2021, 8, 4116-4123.	3.4	6
42	Direct catalytic conversion cellulose pyrolysis vapors into long chain alkanes (LCAs) over Au/TS-1. Journal of the Energy Institute, 2021, 98, 11-19.	5.3	5
43	Boosting production of useful chemicals and micro-mesopores biochar from in situ catalytic pyrolysis of cellulose with red mud. Biomass Conversion and Biorefinery, 2024, 14, 7045-7055.	4.6	5
44	Insights into pyrolysis behavior of polyacrylonitrile precursors using Py-GC/MS. Chemical Papers, 2021, 75, 5297-5311.	2.2	4
45	Development of a New Route for Separating and Purifying 4-Ethyl-2-methoxyphenol Based on the Reaction Mechanism between the Chemical and Calcium Ion. ACS Omega, 2021, 6, 2206-2214.	3.5	3
46	Preparation of Ce–Mn/Fe ₂ O ₃ Catalysts for Steam Catalytic Cracking of Coal Tar. ChemistrySelect, 2018, 3, 12537-12543.	1.5	2
47	Nb2O5 modified NiAl2O4 catalysts for hydrodeoxygenation of methyl palmitate to long-chain alkane. Biomass Conversion and Biorefinery, 2024, 14, 6951-6965.	4.6	2