Zhengwu Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691681/publications.pdf

Version: 2024-02-01

40 papers 1,385

³⁹⁴⁴²¹

19

h-index

36 g-index

40 all docs 40 docs citations

40 times ranked

1075 citing authors

#	Article	IF	CITATIONS
1	Design and Preparation of White High-Strength Concrete with Ground Limestone Powder by Means of Response Surface Methodology. Materials, 2022, 15, 3359.	2.9	1
2	Experimental Application of Cement-Stabilized Pavement Base with Low-Grade Metamorphic Rock Aggregates. Buildings, 2022, 12, 589.	3.1	1
3	Reaction-degree-based multi-scale predictions for the effective properties of ultra-high-performance concrete. Magazine of Concrete Research, 2021, , 1-12.	2.0	19
4	Prediction of Compressive Strength of Concrete with Manufactured Sand by Ensemble Classification and Regression Tree Method. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	19
5	Insight into the Mechanical Performance of the UHPC Repaired Cementitious Composite System after Exposure to High Temperatures. Materials, 2021, 14, 4095.	2.9	11
6	Stochastic micromechanical predictions for the probabilistic behavior of saturated concrete repaired by the electrochemical deposition method. International Journal of Damage Mechanics, 2020, 29, 435-453.	4.2	18
7	Preparation and Self-Healing Properties of Clinker/PVP Microsphere in Cement Paste. Materials, 2020, 13, 589.	2.9	7
8	Preparation and Characterization of Self-Healing Mortar Based on "Build-In―Carbonation. Materials, 2020, 13, 644.	2.9	6
9	Self-regulating Humidity Activated Carbon Material Prepared from Bamboo for the Room. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 267-274.	1.0	2
10	Approach to the management of magnesium slag via the production of Portland cement clinker. Journal of Material Cycles and Waste Management, 2018, 20, 1701-1709.	3.0	26
11	Recent Advances in Intrinsic Selfâ€Healing Cementitious Materials. Advanced Materials, 2018, 30, e1705679.	21.0	197
12	Modification on the Performance of the Hemihydrate Gypsum with the Plant Source Polymer of Dry Matcha Powder. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1452-1458.	1.0	0
13	Migration and transformation of sulfur in the municipal sewage sludge during disposal in cement kiln. Waste Management, 2018, 77, 537-544.	7.4	62
14	A multiphase micromechanical model for unsaturated concrete repaired by electrochemical deposition method with the bonding effects. International Journal of Damage Mechanics, 2018, 27, 1307-1324.	4.2	24
15	Effect of Waste Paper Fiber on Properties of Cement-based Mortar and Relative Mechanism. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 419-426.	1.0	5
16	Micromechanical framework for saturated concrete repaired by the electrochemical deposition method with interfacial transition zone effects. International Journal of Damage Mechanics, 2017, 26, 210-228.	4.2	27
17	Silicon carbide waste as a source of mixture materials for cement mortar. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	9
18	Differential-scheme based micromechanical framework for unsaturated concrete repaired by the electrochemical deposition method. Acta Mechanica, 2017, 228, 415-431.	2.1	20

#	Article	IF	CITATIONS
19	Properties of bamboo charcoal and cement-based composite materials and their microstructure. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 1374-1378.	1.0	6
20	Crack Extension and Possibility of Debonding in Encapsulation-Based Self-Healing Materials. Materials, 2017, 10, 589.	2.9	11
21	Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials. Materials, 2016, 9, 152.	2.9	74
22	An Improved Micromechanical Framework for Saturated Concrete Repaired by the Electrochemical Deposition Method considering the Imperfect Bonding. Journal of Engineering (United States), 2016, 2016, 1-11.	1.0	1
23	Differential-scheme based micromechanical framework for saturated concrete repaired by the electrochemical deposition method. Materials and Structures/Materiaux Et Constructions, 2016, 49, 5183-5193.	3.1	27
24	A multiphase micromechanical model for hybrid fiber reinforced concrete considering the aggregate and ITZ effects. Construction and Building Materials, 2016, 114, 839-850.	7.2	68
25	Investigation on the potential of waste cooking oil as a grinding aid in Portland cement. Journal of Environmental Management, 2016, 184, 545-551.	7.8	47
26	Production of recycled cellulose fibers from waste paper via ultrasonic wave processing. Journal of Applied Polymer Science, $2015,132,.$	2.6	11
27	Effects of Calcium Source on Biochemical Properties of Microbial CaCO3 Precipitation. Frontiers in Microbiology, 2015, 6, 1366.	3.5	37
28	Influence of mineral additives and environmental conditions on the self-healing capabilities of		
	cementitious materials. Cement and Concrete Composites, 2015, 57, 116-127.	10.7	170
29	cementitious materials. Cement and Concrete Composites, 2015, 57, 116-127. Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893.	3.1	10
29 30	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and		
	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893. Interactive Effect of Mechanical Fatigue Load and the Fatigue Effect of Freeze-Thaw on Combined	3.1	10
30	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893. Interactive Effect of Mechanical Fatigue Load and the Fatigue Effect of Freeze-Thaw on Combined Damage of Concrete. Journal of Materials in Civil Engineering, 2015, 27, . Non-Ureolytic Bacterial Carbonate Precipitation as a Surface Treatment Strategy on Cementitious	3.1	10
30	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893. Interactive Effect of Mechanical Fatigue Load and the Fatigue Effect of Freeze-Thaw on Combined Damage of Concrete. Journal of Materials in Civil Engineering, 2015, 27, . Non-Ureolytic Bacterial Carbonate Precipitation as a Surface Treatment Strategy on Cementitious Materials. Journal of Materials in Civil Engineering, 2014, 26, 983-991. Some superconvergence results of high-degree finite element method for a second order elliptic	3.1 2.9 2.9	10 10 73
30 31 32	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893. Interactive Effect of Mechanical Fatigue Load and the Fatigue Effect of Freeze-Thaw on Combined Damage of Concrete. Journal of Materials in Civil Engineering, 2015, 27, . Non-Ureolytic Bacterial Carbonate Precipitation as a Surface Treatment Strategy on Cementitious Materials. Journal of Materials in Civil Engineering, 2014, 26, 983-991. Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients. Open Mathematics, 2014, 12, . Self-healing of cracks in concrete with various crystalline mineral additives in underground	3.1 2.9 2.9	10 10 73 0
30 31 32 33	Effect of different grinding aids on property of granulated blast furnace slag powder. Materials and Structures/Materiaux Et Constructions, 2015, 48, 3885-3893. Interactive Effect of Mechanical Fatigue Load and the Fatigue Effect of Freeze-Thaw on Combined Damage of Concrete. Journal of Materials in Civil Engineering, 2015, 27, . Non-Ureolytic Bacterial Carbonate Precipitation as a Surface Treatment Strategy on Cementitious Materials. Journal of Materials in Civil Engineering, 2014, 26, 983-991. Some superconvergence results of high-degree finite element method for a second order elliptic equation with variable coefficients. Open Mathematics, 2014, 12, . Self-healing of cracks in concrete with various crystalline mineral additives in underground environment. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 938-944. A multi-phase micromechanical model for unsaturated concrete repaired using the electrochemical	3.1 2.9 2.9 1.0	10 10 73 0

ZHENGWU JIANG

#	Article	lF	CITATIONS
37	Healing effectiveness of cracks rehabilitation in reinforced concrete using electrodeposition method. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 917-922.	1.0	35
38	Internal relative humidity distribution in high-performance cement paste due to moisture diffusion and self-desiccation. Cement and Concrete Research, 2006, 36, 320-325.	11.0	62
39	Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes. Cement and Concrete Research, 2005, 35, 1539-1545.	11.0	128
40	Electrochemical deposition induced continuum damage-healing framework for the cementitious composite. International Journal of Damage Mechanics, 0, , 105678952199187.	4.2	6