
Giulia Ronchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691610/publications.pdf Version: 2024-02-01

Сини Ролсні

#	Article	IF	CITATIONS
1	Blood Vessels: The Pathway Used by Schwann Cells to Colonize Nerve Conduits. International Journal of Molecular Sciences, 2022, 23, 2254.	1.8	11
2	The Potential Benefits of Dietary Polyphenols for Peripheral Nerve Regeneration. International Journal of Molecular Sciences, 2022, 23, 5177.	1.8	6
3	Neurodynamic Treatment Promotes Mechanical Pain Modulation in Sensory Neurons and Nerve Regeneration in Rats. Biomedicines, 2022, 10, 1296.	1.4	3
4	Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration. Biomolecules, 2022, 12, 818.	1.8	1
5	Experimental Methods to Simulate and Evaluate Postsurgical Peripheral Nerve Scarring. Journal of Clinical Medicine, 2021, 10, 1613.	1.0	6
6	Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes. Bioengineering and Translational Medicine, 2021, 6, e10223.	3.9	16
7	Effect of unacylated ghrelin on peripheral nerve regeneration. European Journal of Histochemistry, 2021, 65, .	0.6	0
8	Dextran-based tube-guides for the regeneration of the rat sciatic nerve after neurotmesis injury. Biomaterials Science, 2020, 8, 798-811.	2.6	11
9	Preclinical Validation of SilkBridgeTM for Peripheral Nerve Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 835.	2.0	20
10	Fibroblasts Colonizing Nerve Conduits Express High Levels of Soluble Neuregulin1, a Factor Promoting Schwann Cell Dedifferentiation. Cells, 2020, 9, 1366.	1.8	13
11	The Median Nerve Injury Model in Pre-clinical Research – A Critical Review on Benefits and Limitations. Frontiers in Cellular Neuroscience, 2019, 13, 288.	1.8	24
12	The Use of a Hypoallergenic Dermal Matrix for Wrapping in Peripheral Nerve Lesions Regeneration: Functional and Quantitative Morphological Analysis in an Experimental Animal Model. BioMed Research International, 2019, 2019, 1-8.	0.9	8
13	SilkBridgeâ,,¢: a novel biomimetic and biocompatible silk-based nerve conduit. Biomaterials Science, 2019, 7, 4112-4130.	2.6	36
14	Expression patterns and functional evaluation of RGMa during the early phase of peripheral nerve regeneration using the mouse median nerve model. Restorative Neurology and Neuroscience, 2019, 37, 265-272.	0.4	1
15	New basic insights on the potential of a chitosanâ€based medical device for improving functional recovery after radical prostatectomy. BJU International, 2019, 124, 1063-1076.	1.3	6
16	Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiology of Disease, 2019, 124, 14-28.	2.1	23
17	Chitosan tubes enriched with fresh skeletal muscle fibers for delayed repair of peripheral nerve defects. Neural Regeneration Research, 2019, 14, 1079.	1.6	23
18	Modulation of the Neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation. Scientific Reports, 2018, 8, 5047.	1.6	24

Giulia Ronchi

#	Article	IF	CITATIONS
19	Gellan Gum-based luminal fillers for peripheral nerve regeneration: an <i>in vivo</i> study in the rat sciatic nerve repair model. Biomaterials Science, 2018, 6, 1059-1075.	2.6	33
20	Soluble Neuregulin1 is strongly up-regulated in the rat model of Charcot-Marie-Tooth 1A disease. Experimental Biology and Medicine, 2018, 243, 370-374.	1.1	11
21	Peripheral nerve injury and axonotmesis: State of the art and recent advances. Cogent Medicine, 2018, 5, 1466404.	0.7	65
22	Soluble Neuregulin1 Down-Regulates Myelination Genes in Schwann Cells. Frontiers in Molecular Neuroscience, 2018, 11, 157.	1.4	11
23	Chitosan Tubes Enriched with Fresh Skeletal Muscle Fibers for Primary Nerve Repair. BioMed Research International, 2018, 2018, 1-13.	0.9	27
24	Irreversible changes occurring in long-term denervated Schwann cells affect delayed nerve repair. Journal of Neurosurgery, 2017, 127, 843-856.	0.9	38
25	Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nature Communications, 2017, 8, 14088.	5.8	28
26	Peripheral Nerve Reconstruction Using Enriched Chitosan Conduits. , 2017, , .		0
27	Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides. BMC Neuroscience, 2017, 18, 53.	0.8	34
28	The reasons for end-to-side coaptation: how does lateral axon sprouting work?. Neural Regeneration Research, 2017, 12, 529.	1.6	22
29	Chronically denervated distal nerve stump inhibits peripheral nerve regeneration. Neural Regeneration Research, 2017, 12, 739.	1.6	6
30	The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. European Journal of Neuroscience, 2016, 43, 351-364.	1.2	44
31	Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery, 2016, 36, 664-671.	0.6	43
32	Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 2016, 76, 33-51.	5.7	156
33	Epineurial Window Is More Efficient in Attracting Axons than Simple Coaptation in a Sutureless (Cyanoacrylate-Bound) Model of End-to-Side Nerve Repair in the Rat Upper Limb: Functional and Morphometric Evidences and Review of the Literature. PLoS ONE, 2016, 11, e0148443.	1.1	21
34	Generation of New Neurons in Dorsal Root Ganglia in Adult Rats after Peripheral Nerve Crush Injury. Neural Plasticity, 2015, 2015, 1-12.	1.0	31
35	Local delivery of the Neuregulin1 receptor ecto-domain (ecto-ErbB4) has a positive effect on regenerated nerve fiber maturation. Gene Therapy, 2015, 22, 901-907.	2.3	7
36	Enhanced axon outgrowth and improved longâ€distance axon regeneration in sprouty2 deficient mice. Developmental Neurobiology, 2015, 75, 217-231.	1.5	29

Giulia Ronchi

#	Article	IF	CITATIONS
37	New insights on the standardization of peripheral nerve regeneration quantitative analysis. Neural Regeneration Research, 2015, 10, 707.	1.6	5
38	Identification and Validation of Suitable Housekeeping Genes for Normalizing Quantitative Real-Time PCR Assays in Injured Peripheral Nerves. PLoS ONE, 2014, 9, e105601.	1.1	28
39	Discrepancies in quantitative assessment of normal and regenerated peripheral nerve fibers between light and electron microscopy. Journal of the Peripheral Nervous System, 2014, 19, 224-233.	1.4	29
40	The Mouse Median Nerve Experimental Model in Regenerative Research. BioMed Research International, 2014, 2014, 1-6.	0.9	19
41	Experimental model for the study of the effects of platelet-rich plasma on the early phases of muscle healing. Blood Transfusion, 2014, 12 Suppl 1, s221-8.	0.3	15
42	Neuregulin 1 isoforms could be an effective therapeutic candidate to promote peripheral nerve regeneration. Neural Regeneration Research, 2014, 9, 1183.	1.6	11
43	Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Therapy, 2013, 20, 1014-1021.	2.3	42
44	Repairing nerve gaps by vein conduits filled with lipoaspirate-derived entire adipose tissue hinders nerve regeneration. Annals of Anatomy, 2013, 195, 225-230.	1.0	35
45	Evaluating the role of Netrin-1 during the early phase of peripheral nerve regeneration using the mouse median nerve model. Restorative Neurology and Neuroscience, 2013, 31, 337-345.	0.4	12
46	Ghrelin. International Review of Neurobiology, 2013, 108, 207-221.	0.9	7
47	Expression patterns and functional evaluation of the UNC5B receptor during the early phase of peripheral nerve regeneration using the mouse median nerve model. Microsurgery, 2013, 33, 216-222.	0.6	12
48	Future Perspectives in Nerve Repair and Regeneration. International Review of Neurobiology, 2013, 109, 165-192.	0.9	40
49	Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. Journal of Clinical Investigation, 2013, 123, 611-22.	3.9	140
50	ErbB2 Receptor Over-Expression Improves Post-Traumatic Peripheral Nerve Regeneration in Adult Mice. PLoS ONE, 2013, 8, e56282.	1.1	23
51	Use of poly(DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: In vitro and in vivo analysis. Differentiation, 2012, 84, 355-365.	1.0	62
52	Can regenerated nerve fibers return to normal size? A longâ€ŧerm postâ€ŧraumatic study of the rat median nerve crush injury model. Microsurgery, 2012, 32, 383-387.	0.6	48
53	Hippocampal plasticity after a vagus nerve injury in the rat. Neural Regeneration Research, 2012, 7, 1055-63.	1.6	16
54	Direct muscle neurotization after end-to end and end-to-side neurorrhaphy: An experimental study in the rat forelimb model. Neural Regeneration Research, 2012, 7, 2273-8.	1.6	2

GIULIA RONCHI

#	Article	IF	CITATIONS
55	Calibration of the stereological estimation of the number of myelinated axons in the rat sciatic nerve: A multicenter study. Journal of Neuroscience Methods, 2010, 187, 90-99.	1.3	56
56	Standardized crush injury of the mouse median nerve. Journal of Neuroscience Methods, 2010, 188, 71-75.	1.3	29
57	Functional and morphological assessment of a standardized crush injury of the rat median nerve. Journal of Neuroscience Methods, 2009, 179, 51-57.	1.3	67
58	Chapter 5 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research. International Review of Neurobiology, 2009, 87, 81-103.	0.9	111
59	Chapter 3 Histology of the Peripheral Nerve and Changes Occurring During Nerve Regeneration. International Review of Neurobiology, 2009, 87, 27-46.	0.9	218
60	Chapter 4 Methods and Protocols in Peripheral Nerve Regeneration Experimental Research: Part I—Experimental Models. International Review of Neurobiology, 2009, 87, 47-79.	0.9	73
61	Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. Journal of Neuroscience Methods, 2008, 169, 119-127.	1.3	48
62	Early homing of adult mesenchymal stem cells in normal and infarcted isolated beating hearts. Journal of Cellular and Molecular Medicine, 2008, 12, 507-521.	1.6	25