List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development and Application of Hydrogen Storage. Journal of Iron and Steel Research International, 2015, 22, 757-770.	1.4	108
2	Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg 88 Y 12 binary alloy. International Journal of Hydrogen Energy, 2016, 41, 2689-2699.	3.8	84
3	Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy. International Journal of Hydrogen Energy, 2016, 41, 5994-6003.	3.8	75
4	Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium. Journal of Power Sources, 2018, 378, 636-645.	4.0	70
5	Phase transformation, thermodynamics and kinetics property of Mg90Ce5RE5 (RE = La, Ce, Nd) hydrogen storage alloys. Journal of Materials Science and Technology, 2020, 51, 84-93.	5.6	63
6	Catalytic effect of in situ formed Mg2Ni and REH (RE: Ce and Y) on thermodynamics and kinetics of Mg-RE-Ni hydrogen storage alloy. Renewable Energy, 2020, 157, 828-839.	4.3	58
7	Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y. International Journal of Hydrogen Energy, 2019, 44, 16765-16776.	3.8	56
8	Cycle stabilities of the La0.7Mg0.3Ni2.55â^'xCo0.45Mx (M=Fe, Mn, Al; x=0, 0.1) electrode alloys prepared by casting and rapid quenching. Journal of Alloys and Compounds, 2008, 458, 340-345.	2.8	54
9	An investigation on electrochemical and gaseous hydrogen storage performances of as-cast La1â^'xPrxMgNi3.6Co0.4 (xÂ=Â0–0.4) alloys. International Journal of Hydrogen Energy, 2014, 39, 14282-14287	3.8	49
10	Effects of adding over-stoichiometrical Ti and substituting Fe with Mn partly on structure and hydrogen storage performances of TiFe alloy. Renewable Energy, 2019, 135, 1481-1498.	4.3	48
11	Research progress in Mg-based hydrogen storage alloys. Rare Metals, 2014, 33, 499-510.	3.6	45
12	Hydrogen storage properties of LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys. Journal of Alloys and Compounds, 2014, 617, 29-33.	2.8	44
13	Effect of elemental substitution on the structure and hydrogen storage properties of LaMgNi4 alloy. Materials and Design, 2016, 93, 46-52.	3.3	43
14	Investigation on structures and electrochemical performances of the as-cast and -quenched La0.7Mg0.3Co0.45Ni2.55-xFex(x=0–0.4) electrode alloys. International Journal of Hydrogen Energy, 2007, 32, 4627-4634.	3.8	41
15	Effect of substituting Co with Fe on the cycle stabilities of the as-cast and quenched AB5-type hydrogen storage alloys. Journal of Power Sources, 2005, 148, 105-111.	4.0	40
16	Progress of graphene and loaded transition metals on Mg-based hydrogen storage alloys. International Journal of Hydrogen Energy, 2021, 46, 33468-33485.	3.8	40
17	Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg–Ce–Y based alloy. Renewable Energy, 2020, 162, 2153-2165.	4.3	36
18	An investigation on electrochemical hydrogen storage performances of the as-cast and -annealed La0.8â^'xSmxMg0.2Ni3.35Al0.1Si0.05 (x=0–0.4) alloys. Journal of Alloys and Compounds, 2012, 537, 175-182.	2.8	35

#	Article	IF	CITATIONS
19	Electrochemical performances of the as-melt La0.75â^'xMxMg0.25Ni3.2Co0.2Al0.1 (MÂ=ÂPr, Zr; xÂ=Â0, 0.2) alloys applied to Ni/metal hydride (MH) battery. International Journal of Hydrogen Energy, 2012, 37, 14590-14597.	3.8	35
20	Investigations on gaseous hydrogen storage performances and reactivation ability of as-cast TiFe1-Ni (x=0, 0.1, 0.2 and 0.4) alloys. International Journal of Hydrogen Energy, 2019, 44, 4240-4252.	3.8	34
21	Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning. Renewable Energy, 2019, 138, 263-271.	4.3	33
22	Hydrogen storage characteristics of the nanocrystalline and amorphous Mg–Nd–Ni–Cu-based alloys prepared by melt spinning. International Journal of Hydrogen Energy, 2014, 39, 3790-3798.	3.8	31
23	Microstructure and enhanced gaseous hydrogen storage behavior of CoS2-catalyzed Sm5Mg41 alloy. Renewable Energy, 2018, 116, 878-891.	4.3	31
24	Effects of rapid quenching on the electrochemical performances and microstructures of the Mm(NiMnSiAl)4.3Co0.6?xFex (x = 0?0.6) electrode alloys. Journal of Power Sources, 2004, 137, 309-316.	4.0	29
25	Comparative study of electrochemical performances of the as-melt Mg20Ni10â^'xMx (M=None, Cu, Co,) Tj ETQq1 131-137.	1 0.7843 2.8	14 rgBT /O 29
26	Highly improved electrochemical hydrogen storage performances of the Nd–Cu–added Mg2Ni-type alloys by melt spinning. Journal of Alloys and Compounds, 2014, 584, 81-86.	2.8	29
27	Hydrogen induced amorphization behaviors of multiphase La0.8Mg0.2Ni3.5 alloy. International Journal of Hydrogen Energy, 2015, 40, 7093-7102.	3.8	28
28	Characterization of microstructure, hydrogen storage kinetics and thermodynamics of a melt-spun Mg86Y10Ni4 alloy. International Journal of Hydrogen Energy, 2019, 44, 6728-6737.	3.8	28
29	A comparison study of hydrogen storage properties of as-milled Sm 5 Mg 41 alloy catalyzed by CoS 2 and MoS 2 nano-particles. Journal of Materials Science and Technology, 2018, 34, 1851-1858.	5.6	27
30	Investigation on structure and hydrogen storage performance of as-milled and cast Mg 90 Al 10 alloys. International Journal of Hydrogen Energy, 2018, 43, 6642-6653.	3.8	27
31	Structure and hydrogenation performances of as-cast Ti1.1-RE Fe0.8Mn0.2 (REÂ=ÂPr, Sm and Nd; xÂ=Â0, 0.01) alloys. International Journal of Hydrogen Energy, 2018, 43, 19091-19101.	3.8	27
32	Phase evolution, thermodynamics and kinetics property of transition metal (TM = Zr, Ti, V) catalyzed Mg–Ce–Y–Ni hydrogen storage alloys. Journal of Physics and Chemistry of Solids, 2020, 144, 109516.	1.9	27
33	Hydrogen storage behavior of Mg-based alloy catalyzed by carbon-cobalt composites. Journal of Magnesium and Alloys, 2021, 9, 1977-1988.	5.5	26
34	Influence of spark plasma sintering temperature on electrochemical performance of La0.80Mg0.20Ni3.75 alloy. Materials Chemistry and Physics, 2008, 112, 596-602.	2.0	24
35	Improved hydrogen storage kinetics of Mg-based alloys by substituting La with Sm. International Journal of Hydrogen Energy, 2020, 45, 21588-21599.	3.8	24
36	Characterization of microstructure, hydrogen storage kinetics and thermodynamics of ball-milled Mg90Y1.5Ce1.5Ni7 alloy. International Journal of Hydrogen Energy, 2021, 46, 17802-17813.	3.8	24

#	Article	IF	CITATIONS
37	Structures and electrochemical hydrogen storage behaviours of La0.75â^xPrxMg0.25Ni3.2Co0.2Al0.1 (x=0–0.4) alloys prepared by melt spinning. International Journal of Hydrogen Energy, 2009, 34, 6335-6342.	3.8	23
38	Improvement in the hydrogen storage performance of the as-milled Sm–Mg alloys using MoS ₂ nano-particle catalysts. RSC Advances, 2017, 7, 56365-56374.	1.7	23
39	Microstructure and hydrogen absorption/desorption properties of Mg24Y3M (MÂ=ÂNi, Co, Cu, Al) alloys. International Journal of Hydrogen Energy, 2018, 43, 8877-8887.	3.8	23
40	Electrochemical characteristics of Mg2â^'xZrxNi (x=0–0.6) electrode alloys prepared by mechanical alloying. Journal of Alloys and Compounds, 2008, 450, 208-214.	2.8	22
41	Influences of hydrogen-induced amorphization and annealing treatment on gaseous hydrogen storage properties of La1â"Pr MgNi3.6Co0.4 (x= 0–0.4) alloys. Journal of Alloys and Compounds, 2015, 639, 15-20.	2.8	22
42	Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites. Energy, 2018, 165, 709-719.	4.5	22
43	Improved hydrogen storage dynamics of amorphous and nanocrystalline Ce-Mg-Ni-based CeMg12-type alloys synthesized by ball milling. Renewable Energy, 2019, 132, 167-175.	4.3	22
44	Microstructure characteristics, hydrogen storage kinetic and thermodynamic properties of Mg80–Ni2OY (x = 0–7) alloys. International Journal of Hydrogen Energy, 2019, 44, 7371-7380.	3.8	22
45	Phase evolution, hydrogen storage thermodynamics and kinetics of ternary Mg90Ce5Sm5 alloy. Journal of Rare Earths, 2020, 38, 633-641.	2.5	22
46	Improvement of substituting La with Ce on hydrogen storage thermodynamics and kinetics of Mg-based alloys. International Journal of Hydrogen Energy, 2021, 46, 28719-28733.	3.8	22
47	Investigation on gaseous and electrochemical hydrogen storage performances of as-cast and milled Ti1.1Fe0.9Ni0.1 and Ti1.09Mg0.01Fe0.9Ni0.1 alloys. International Journal of Hydrogen Energy, 2018, 43, 1691-1701.	3.8	21
48	Dual-tuning of de/hydrogenation kinetic properties of Mg-based hydrogen storage alloy by building a Ni-/Co-multi-platform collaborative system. International Journal of Hydrogen Energy, 2021, 46, 24202-24213.	3.8	21
49	Research progress of TiFe-based hydrogen storage alloys. Journal of Iron and Steel Research International, 2022, 29, 537-551.	1.4	21
50	Investigation on structures and electrochemical characteristics of the as-cast and quenched La0.5Ce0.2Mg0.3Co0.4Ni2.6â^xMnx (x=0–0.4) electrode alloys. Journal of Alloys and Compounds, 2008, 461, 591-597.	2.8	20
51	Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg20Ni10-xCox(x=0â~4) alloys prepared by melt spinning. International Journal of Hydrogen Energy, 2009, 34, 8144-8151.	3.8	20
52	Structure and electrochemical performances of Mg2Ni1â^'Mn (x= 0–0.4) electrode alloys prepared by melt spinning. Electrochimica Acta, 2010, 56, 427-434.	2.6	20
53	Gaseous and electrochemical hydrogen storage kinetics of nanocrystalline Mg2Ni-type alloy prepared by rapid quenching. Journal of Alloys and Compounds, 2011, 509, 5604-5610.	2.8	20
54	Structure and electrochemical hydrogen storage characteristics of the as-cast and annealed La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0-0.4) alloys. Journal of Rare Earths, 2012, 30, 696-704.	2.5	20

#	Article	IF	CITATIONS
55	Electrochemical performances of as-cast and annealed La0.8-x Nd x Mg0.2Ni3.35Al0.1Si0.05 (xÂ=Â0–0.4) alloys applied to Ni/metal hydride (MH) battery. Rare Metals, 2013, 32, 150-158.	3.6	20
56	Kinetic properties of La2Mg17–xÂwt.% Ni (xÂ=Â0–200) hydrogen storage alloys prepared by ball milling. International Journal of Hydrogen Energy, 2014, 39, 13557-13563.	3.8	20
57	An investigation on hydrogen storage thermodynamics and kinetics of Pr–Mg–Ni-based PrMg12-type alloys synthesized by mechanical milling. Journal of Alloys and Compounds, 2016, 688, 585-593.	2.8	20
58	Hydrogen Storage Kinetics of Nanocrystalline and Amorphous LaMg12-Type Alloy–Ni Composites Synthesized by Mechanical Milling. Journal of Materials Science and Technology, 2016, 32, 218-225.	5.6	19
59	Influence of adding nano-graphite powders on the microstructure and gas hydrogen storage properties of ball-milled Mg90Al10 alloys. Carbon, 2019, 149, 93-104.	5.4	19
60	Effect of Sm content on activation capability and hydrogen storage performances of TiFe alloy. International Journal of Hydrogen Energy, 2021, 46, 24517-24530.	3.8	19
61	Electrochemical hydrogen storage characteristics of as-cast and annealed La0.8-xNdxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0–0.4) alloys. Transactions of Nonferrous Metals Society of China, 2013, 23, 1403-1412.	1.7	18
62	The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys. Rare Metals, 2015, 34, 569-579.	3.6	18
63	Single phase A2B7-type La-Mg-Ni alloy with improved electrochemical properties prepared by melt-spinning and annealing. Journal of Rare Earths, 2019, 37, 1305-1311.	2.5	18
64	Catalytic effect comparison of TiO2 and La2O3 on hydrogen storage thermodynamics and kinetics of the as-milled La-Sm-Mg-Ni-based alloy. Journal of Magnesium and Alloys, 2021, 9, 2063-2077.	5.5	18
65	Hydrogen storage kinetics of nanocrystalline and amorphous Cu—Nd-added Mg2Ni-type alloys. Transactions of Nonferrous Metals Society of China, 2014, 24, 3524-3533.	1.7	17
66	Hydrogen storage thermodynamics and kinetics of RE–Mg–Ni-based alloys prepared by mechanical milling. International Journal of Hydrogen Energy, 2017, 42, 18473-18483.	3.8	17
67	Structures and electrochemical hydrogen storage properties of melt-spun RE-Mg–Ni–Co–Al alloys. International Journal of Hydrogen Energy, 2017, 42, 14227-14245.	3.8	17
68	A comparison study of hydrogen storage performances of SmMg 11 Ni alloys prepared by melt spinning and ball milling. Journal of Rare Earths, 2018, 36, 409-417.	2.5	17
69	Novel A7B23-type La-Mg-Ni-Co compound for application on Ni-MH battery. Journal of Power Sources, 2019, 441, 126667.	4.0	17
70	Interactions of Y and Cu on Mg2Ni type hydrogen storage alloys: A study based on experiments and density functional theory calculation. International Journal of Hydrogen Energy, 2020, 45, 28974-28984.	3.8	17
71	Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. International Journal of Hydrogen Energy, 2020, 45, 33832-33845.	3.8	17
72	Effect of Pr content on activation capability and hydrogen storage performances of TiFe alloy. Journal of Alloys and Compounds, 2022, 890, 161785.	2.8	17

#	Article	IF	CITATIONS
73	A comparison study of hydrogen storage performances of as-milled YMg11Ni alloy catalyzed by CeO2 and MoS2. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 1-9.	1.7	16
74	A comparison of TiF ₃ and NbF ₅ catalytic effects on hydrogen absorption and desorption kinetics of a ball-milled Mg ₈₅ Zn ₅ Ni ₁₀ alloy. RSC Advances, 2018, 8, 34525-34535.	1.7	16
75	Hydrogen storage thermodynamics and dynamics of Mg–Y–Ni–Cu based alloys synthesized by melt spinning. Journal of Physics and Chemistry of Solids, 2020, 138, 109252.	1.9	16
76	Characterization on the kinetics and thermodynamics of Mg-based hydrogen storage alloy by the multiple alloying of Ce, Ni and Y elements. Materials Characterization, 2021, 182, 111583.	1.9	16
77	Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg24Ni10Cu2)100â^`xNdx (x=0â^`20) alloys prepared by melt spinning. Transactions of Nonferrous Metals Society of China, 2013, 23, 3668-3676.	1.7	15
78	A comparative study on the microstructure and cycling stability of the amorphous and nanocrystallization Mg60Ni20La10 alloys. International Journal of Hydrogen Energy, 2018, 43, 19141-19151.	3.8	15
79	Structure and electrochemical hydrogen storage characteristics of La0.8â^'x Pr x Mg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0–0.4) electrode alloys. Journal of Central South University, 2013, 20, 1142-1150.	1.2	14
80	Effect of mechanical grinding on the electrochemical hydrogen storage properties of Mg–Ni–Y alloy. Journal of Solid State Electrochemistry, 2015, 19, 1187-1195.	1.2	14
81	Effects of spinning rate on structures and electrochemical hydrogen storage performances of RE–Mg–Ni–Mn-based AB2-type alloys. Transactions of Nonferrous Metals Society of China, 2016, 26, 3219-3231.	1.7	14
82	An investigation on hydrogen storage thermodynamics and kinetics of Nd–Mg–Ni-based alloys synthesized by mechanical milling. International Journal of Hydrogen Energy, 2016, 41, 12205-12213.	3.8	14
83	Structure and electrochemical hydrogen storage characteristics of Ce-Mg-Ni-based alloys synthesized by mechanical milling. Journal of Rare Earths, 2017, 35, 280-289.	2.5	14
84	Electrochemical hydrogen storage behaviors of as-cast and spun RE–Mg–Ni–Co–Al-based AB2-type alloys applied to Ni–MH battery. Rare Metals, 2020, 39, 181-192.	3.6	14
85	Electrochemical hydrogen storage behaviors of as-milled Mg–Ti–Ni–Co–Al-based alloys applied to Ni-MH battery. Electrochimica Acta, 2020, 342, 136123.	2.6	14
86	Improved hydrogen storage performances of nanocrystalline RE5Mg41-type alloy synthesized by ball milling. Journal of Energy Storage, 2022, 46, 103702.	3.9	14
87	An investigation on the hydrogen storage characteristics of the melt-spun nanocrystalline and amorphous Mg20â^'xLaxNi10 (x=0, 2) hydrogen storage alloys. Materials Chemistry and Physics, 2009, 115, 328-333.	2.0	13
88	Hydrogen storage properties of nanocrystalline and amorphous Pr–Mg–Ni-based alloys synthesized by mechanical milling. International Journal of Hydrogen Energy, 2017, 42, 22379-22387.	3.8	13
89	Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg 12 -type alloys synthesized by mechanical milling. Transactions of Nonferrous Metals Society of China, 2017, 27, 551-561.	1.7	13
90	Effect of graphite (GR) content on microstructure and hydrogen storage properties of nanocrystalline Mg24Y3–Ni–GR composites. Journal of Alloys and Compounds, 2017, 726, 498-506.	2.8	13

#	Article	IF	CITATIONS
91	Hydrogen storage performance of the as-milled Y Mg Ni alloy catalyzed by CeO2. International Journal of Hydrogen Energy, 2018, 43, 1643-1650.	3.8	13
92	Effects of milling duration on electrochemical hydrogen storage behavior of as-milled Mg–Ce–Ni–Al-based alloys for use in Ni-metal hydride batteries. Journal of Physics and Chemistry of Solids, 2019, 133, 178-186.	1.9	13
93	Effects of adding nano-CeO2 powder on microstructure and hydrogen storage performances of mechanical alloyed Mg90Al10 alloy. International Journal of Hydrogen Energy, 2019, 44, 1735-1749.	3.8	13
94	Effect of graphite (GR) content on electrochemical hydrogen storage performances of nanocrystalline and amorphous La9Ce1Mg80Ni5–Ni–GR composites synthesized by mechanical milling. International Journal of Hydrogen Energy, 2020, 45, 29023-29033.	3.8	13
95	Investigations on hydrogen storage performances and mechanisms of as-cast TiFe0.8Ni0.2Co (m=0, 0.03,) Tj ET	Qq1 1 0.7	84314 rgBT
96	Microstructure characteristics, hydrogen storage thermodynamic and kinetic properties of Mg–Ni–Y based hydrogen storage alloys. International Journal of Hydrogen Energy, 2022, 47, 27059-27070.	3.8	13
97	Structures and electrochemical hydrogen storage performance of Si added A2B7-type alloy electrodes. Transactions of Nonferrous Metals Society of China, 2014, 24, 406-414.	1.7	12
98	Effects of stoichiometric ratio La/Mg on structures and electrochemical performances of as-cast and annealed La–Mg–Ni-based A2B7-type electrode alloys. Transactions of Nonferrous Metals Society of China, 2015, 25, 1968-1977.	1.7	12
99	Properties of Mechanically Milled Nanocrystalline and Amorphous Mg–Y–Ni Electrode Alloys for Ni–MH Batteries. Acta Metallurgica Sinica (English Letters), 2015, 28, 826-836.	1.5	12
100	Mechanism of distinct high rate dischargeability of La4MgNi19 electrode alloys prepared by casting and rapid quenching followed by annealing treatment. International Journal of Hydrogen Energy, 2016, 41, 18571-18581.	3.8	12
101	Hydrogen Storage Thermodynamics and Dynamics of Nd–Mg–Ni-Based NdMg12-Type Alloys Synthesized by Mechanical Milling. Acta Metallurgica Sinica (English Letters), 2016, 29, 577-586.	1.5	12
102	Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors. Acta Metallurgica Sinica (English Letters), 2018, 31, 723-734.	1.5	12
103	Microstructure and improved hydrogen storage properties of Mg85Zn5Ni10 alloy catalyzed by Cr2O3 nanoparticles. Journal of Physics and Chemistry of Solids, 2019, 134, 295-306.	1.9	12
104	Structure and hydrogen storage characteristics of as-spun Mg-Y-Ni-Cu alloys. Journal of Materials Science and Technology, 2019, 35, 1727-1734.	5.6	12
105	Structure and hydrogen storage performances of La–Mg–Ni–Cu alloys prepared by melt spinning. International Journal of Hydrogen Energy, 2019, 44, 5399-5407.	3.8	12
106	Enhanced hydrogen storage performance of Mg-Cu-Ni system catalyzed by CeO2 additive. Journal of Rare Earths, 2020, 38, 983-993.	2.5	12
107	Amorphous cobalt sulfide/N-doped carbon core/shell nanoparticles as an anode material for potassium-ion storage. Journal of Materials Science, 2020, 55, 15213-15221.	1.7	12

A comparison study of hydrogen storage performances of as-cast La10-RE Mg80Ni10 ($x\hat{A}=\hat{A}0$ or 3; RE = Sm) Tj ETQ20 0 0 rgBT/Overloch

#	Article	IF	CITATIONS
109	Effect of Y partially substituting La on the phase structure and hydrogen storage property of La–Mg–Ni alloys. Journal of Physics and Chemistry of Solids, 2022, 167, 110744.	1.9	12
110	Hydrogen storage behaviours of nanocrystalline and amorphous Mg20Ni10-xCox(x=0-4) alloys prepared by melt spinning. Transactions of Nonferrous Metals Society of China, 2010, 20, 405-411.	1.7	11
111	An investigation of hydrogen storage kinetics of melt-spun nanocrystalline and amorphous Mg2Ni-type alloys. Journal of Rare Earths, 2011, 29, 87-93.	2.5	11
112	Catalytic effect of MoS2 on hydrogen storage thermodynamics and kinetics of an as-milled YMg11Ni alloy. RSC Advances, 2017, 7, 37689-37698.	1.7	11
113	Effect of milling duration on hydrogen storage thermodynamics and kinetics of ball-milled Ce–Mg–Ni-based alloy powders. Journal of Iron and Steel Research International, 2018, 25, 746-754.	1.4	11
114	Gas hydrogen absorption and electrochemical properties of Mg24Ni10Cu2 alloys improved by Y substitution, ball milling and Ni addition. International Journal of Hydrogen Energy, 2019, 44, 5382-5388.	3.8	11
115	A comparative study of NbF5 catalytic effects on hydrogenation/dehydrogenation kinetics of Mg-Zn-Ni and Mg-Cu-Ni systems. Materials Characterization, 2021, 174, 110993.	1.9	11
116	Microstructures and electrochemical performances of La2Mg(Ni0.85Co0.15)9MxMx (M=BM=B, Cr, Ti;) Tj ETQqC Hydrogen Energy, 2006, 31, 63-69.	0 0 rgBT 3.8	Overlock 10 10
117	Effect of annealing temperature on microstructure and electrochemical performance of La0.75Mg0.25Ni3.5Co0.2 hydrogen storage electrode alloy. Journal of Rare Earths, 2008, 26, 99-104.	2.5	10
118	Investigation on electrochemical performances of melt-spun nanocrystalline and amorphous Mg2Ni1â°'xMnx (xÂ=Â0–0.4) electrode alloys. International Journal of Hydrogen Energy, 2010, 35, 11025-11034.	3.8	10
119	Electrochemical hydrogen storage characteristics of La0.75â^'x M x Mg0.25Ni3.2Co0.2Al0.1 (M = Zr, Pr; x) Tj ETG	2q] 1 0.78	34314 rgBT /(
120	Highly Improved Gaseous Hydrogen Storage Characteristics of the Nanocrystalline and Amorphous Nd–Cu-added Mg2Ni-type Alloys by MeltÂSpinning. Journal of Materials Science and Technology, 2014, 30, 1020-1026.	5.6	10
121	An investigation on electrochemical hydrogen storage performances of Mg-Y-Ni alloys prepared by mechanical milling. Journal of Rare Earths, 2015, 33, 874-883.	2.5	10
122	Structures and electrochemical performances of as-spun RE-Mg-Ni-Co-Al alloys applied to Ni-MH battery. Journal of Materials Science and Technology, 2018, 34, 370-378.	5.6	10
123	Catalytic effects of TiO2 on hydrogen storage thermodynamics and kinetics of the as-milled Mg-based alloy. Materials Characterization, 2021, 176, 111118.	1.9	10
124	Characteristics of electrochemical hydrogen storage using Ti–Fe based alloys prepared by ball milling. International Journal of Hydrogen Energy, 2022, 47, 1036-1047.	3.8	10
125	Effect of substituting Ni with Cu on the cycle stability of La0.7Mg0.3Ni2.55â^'xCo0.45Cux (x=0–0.4) electrode alloy prepared by casting and rapid quenching. Materials Characterization, 2007, 58, 289-295.	1.9	9
126	Effect of Ni/(La+Mg) ratio on structure and electrochemical performance of La-Mg-Ni alloy system. Journal of Iron and Steel Research International, 2009, 16, 83-88.	1.4	9

#	Article	IF	CITATIONS
127	Influence of the substituting Ni with Fe on the cycle stabilities of as-cast and as-quenched La0.7Mg0.3Co0.45Ni2.55â°xFex (x=0–0.4) electrode alloys. Materials Characterization, 2010, 61, 305-311.	1.9	9
128	Enhanced hydrogen storage kinetics of nanocrystalline and amorphous Mg2N-type alloy by substituting Ni with Co. Transactions of Nonferrous Metals Society of China, 2011, 21, 2002-2009.	1.7	9
129	Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg2Ni-type alloys prepared by melt-spinning. Transactions of Nonferrous Metals Society of China, 2011, 21, 502-511.	1.7	9
130	Electrochemical hydrogen-storage performance of Mg20â^'x Y x Ni10 (xÂ=Â0–4) alloys prepared by mechanical milling. Journal of Applied Electrochemistry, 2015, 45, 931-941.	1.5	9
131	Structures and electrochemical performances of RE-Mg-Ni-Mn-based alloys prepared by casting and melt spinning. Journal of Rare Earths, 2016, 34, 1241-1251.	2.5	9
132	Structures and electrochemical performances of as-cast and spun RE-Mg-Ni-Mn-based alloys applied to Ni-MH battery. Journal of Iron and Steel Research International, 2017, 24, 296-305.	1.4	9
133	Electrochemical hydrogen storage performance of as-cast and as-spun RE-Mg-Ni-Co-Al-based alloys applied to Ni/MH battery. Transactions of Nonferrous Metals Society of China, 2018, 28, 711-721.	1.7	9
134	Microstructure, hydrogen storage thermodynamics and kinetics of La5Mg95–Ni (x=5, 10, 15) alloys. Transactions of Nonferrous Metals Society of China, 2019, 29, 1057-1066.	1.7	9
135	Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Metals, 2019, 38, 1144-1152.	3.6	9
136	Influences of La addition on the hydrogen storage performances of TiFe-base alloy. Journal of Physics and Chemistry of Solids, 2021, 157, 110176.	1.9	9
137	Effects of adding Nd on the microstructure and dehydrogenation performance of Mg90Al10 alloy. Materials Characterization, 2021, 171, 110795.	1.9	9
138	Investigation on the gaseous hydrogen storage properties of as-cast Mg95-Al5Y (x = 0–5) alloys. International Journal of Hydrogen Energy, 2022, 47, 12653-12664.	3.8	9
139	The hydrogenation and dehydrogenation behaviours of Mg20â^'xLaxNi10(x=0–6) alloys prepared by casting and rapid quenching. Journal of Alloys and Compounds, 2009, 476, 457-461.	2.8	8
140	Effects of substituting La with M (M=Sm, Nd, Pr) on electrochemical hydrogen storage characteristics of A2B7-type electrode alloys. Transactions of Nonferrous Metals Society of China, 2014, 24, 4012-4022.	1.7	8
141	The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10â^'x M x (M=Cu, Co, Mn; xÂ=Â0–4) alloys. Rare Metals, 2014, 33, 663-673.	3.6	8
142	Hydrogen storage performances of LaMg11Ni +xwt% Ni (x= 100, 200) alloys prepared by mechanical milling. Journal of Alloys and Compounds, 2015, 645, S438-S445.	2.8	8
143	Hydrogen storage thermodynamic and kinetic characteristics of PrMg12-type alloys synthesized by mechanical milling. Journal of Iron and Steel Research International, 2017, 24, 198-205.	1.4	8
144	Improvement on hydrogen storage thermodynamics and kinetics of the as-milled SmMg11Ni alloy by adding MoS2. International Journal of Hydrogen Energy, 2017, 42, 17157-17166.	3.8	8

#	Article	IF	CITATIONS
145	Structure and electrochemical hydrogen storage behaviors of RE-Mg-Ni-Co-Al-based AB 2 -type alloys prepared by melt spinning. Journal of Alloys and Compounds, 2017, 699, 378-385.	2.8	8
146	A Comparison Study of Hydrogen Storage Thermodynamics and Kinetics of YMg11Ni Alloy Prepared by Melt Spinning and Ball Milling. Acta Metallurgica Sinica (English Letters), 2017, 30, 1040-1048.	1.5	8
147	Research on the synergistic doped effects and the catalysis properties of Cu 2+ and Zn 2+ co-doped CeO 2 solid solutions. Journal of Solid State Chemistry, 2018, 264, 148-155.	1.4	8
148	Improved hydrogen storage kinetics of nanocrystalline and amorphous Ce–Mg–Ni-based CeMg ₁₂ -type alloys synthesized by mechanical milling. RSC Advances, 2018, 8, 23353-23363.	1.7	8
149	Electrochemical hydrogen storage behaviors of as-milled Mg-Ce-Ni-Al-based alloys applied to Ni-MH battery. Applied Surface Science, 2019, 494, 170-178.	3.1	8
150	Structure and electrochemical hydrogen storage behaviors of Mg–Ce–Ni–Al-based alloys prepared by mechanical milling. Journal of Rare Earths, 2020, 38, 1093-1102.	2.5	8
151	Electrochemical Performance of Nanocrystalline and Amorphous Mg–Nd–Ni–Cu-Based Mg2Ni-type Alloy Electrodes Used in Ni-MH Batteries. Acta Metallurgica Sinica (English Letters), 2014, 27, 1088-1098.	1.5	7
152	Changes of crystal structure and hydrogen storage performances for multiphase La0.7Mg0.3Ni3 alloy upon gas–solid cycling. Rare Metals, 2017, 36, 101-107.	3.6	7
153	Highly ameliorated gaseous and electrochemical hydrogen storage dynamics of nanocrystalline and amorphous LaMg12-type alloys prepared by mechanical milling. Journal of Iron and Steel Research International, 2017, 24, 50-58.	1.4	7
154	Improved hydrogen storage kinetics of nanocrystalline and amorphous Pr-Mg-Ni-based PrMg12-type alloys synthesized by mechanical milling. International Journal of Hydrogen Energy, 2017, 42, 18452-18464.	3.8	7
155	Hydrogen storage performances of as-milled REMg11Ni (RE=Y, Sm) alloys catalyzed by MoS2. Transactions of Nonferrous Metals Society of China, 2018, 28, 1828-1837.	1.7	7
156	Hydrogen storage properties of amorphous and nanocrystalline (Mg24Ni10Cu2)100-Nd (xÂ=Â0–20) alloys. International Journal of Hydrogen Energy, 2019, 44, 5365-5373.	3.8	7
157	Structure and Electrochemical Hydrogen Storage Properties of as-Milled Mg–Ce–Ni–Al-Based Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 630-642.	1.5	7
158	Hydrogen storage performances of the as-milled REMg 11 Ni (RE = Sm, Y) alloys catalyzed by CeO 2. Progress in Natural Science: Materials International, 2018, 28, 259-265.	1.8	7
159	Effects of La substitution on microstructure and hydrogen storage properties of Ti–Fe–Mn-based alloy prepared through melt spinning. Transactions of Nonferrous Metals Society of China, 2021, 31, 3087-3095.	1.7	7
160	Structures and electrochemical performances of La0.75–xZrxMg0.25Ni3.2Co0.2Al0.1 (x=0–0.2) electrode alloys prepared by melt spinning. Transactions of Nonferrous Metals Society of China, 2010, 20, 607-613.	1.7	6
161	An investigation on electrochemical performances of as-cast and annealed La0.8Mg0.2Ni3.3Co0.2Si x (x) Tj ETQ 2125-2135.	q1 1 0.78 1.2	4314 rgBT / 6
162	Electrochemical properties of nanocrystalline and amorphous Mg-Y-Ni alloys applied to Ni-MH battery. Transactions of Nonferrous Metals Society of China, 2015, 25, 3736-3746.	1.7	6

#	Article	IF	CITATIONS
163	Gaseous and electrochemical hydrogen storage behaviors of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys. Rare Metals, 2015, 34, 463-471.	3.6	6
164	Electrochemical performance of La 2– x Sm x Mg 16 Ni+200 wt.% Ni (x =0, 0.1, 0.2, 0.3, 0.4) alloys. Journal of Rare Earths, 2017, 35, 683-689.	2.5	6
165	Structures and hydrogen storage performances of rare earth-Mg-Ni-Mn-based AB2-type alloys applied to Ni-MH battery. Journal of Solid State Electrochemistry, 2017, 21, 1015-1025.	1.2	6
166	Microstructure and hydrogen storage properties of Mg-based Mg85Zn5Ni10 alloy powders. Journal of Iron and Steel Research International, 2018, 25, 1172-1178.	1.4	6
167	An investigation of gaseous hydrogen storage characterizations of Mg–Y–Ni–Cu alloys synthesized by melt spinning. RSC Advances, 2018, 8, 28969-28977.	1.7	6
168	Nanocrystalline Mg80Y4Ni8Cu8 alloy with sub-10 nm microstructure and excellent hydrogen storage cycling stability prepared by nanocrystallization. Intermetallics, 2019, 111, 106475.	1.8	6
169	Gaseous hydrogen storage properties of Mg-Y-Ni-Cu alloys preparedÂby melt spinning. Journal of Rare Earths, 2019, 37, 750-759.	2.5	6
170	Structures and hydrogen storage properties of RE–Mg–Ni–Mn-based AB2-type alloys prepared by casting and melt spinning. Rare Metals, 2019, 38, 1086-1096.	3.6	6
171	Removal performance and mechanism of Fe3O4/graphene oxide as an efficient and recyclable adsorbent toward aqueous Hg(II). Research on Chemical Intermediates, 2020, 46, 4509-4527.	1.3	6
172	Phase transformation by a step-growth mechanism in annealed La–Mg–Ni-based layered-stacking alloys. Journal of Alloys and Compounds, 2020, 834, 154282.	2.8	6
173	Hydrogen storage property of as-milled La7RE3Mg80Ni10 (RE = Sm, Ce) alloys. International Journal of Hydrogen Energy, 2020, 45, 28163-28174.	3.8	6
174	Effects of substituting Mg with Zr on the electrochemical characteristics of Mg2Ni-type electrode alloys prepared by mechanical alloying. Materials Characterization, 2008, 59, 390-396.	1.9	5
175	Hydriding and dehydriding kinetics of nanocrystalline and amorphous Mg2Ni1â^'x Mn x (x=0â^'0.4) alloys prepared by melt spinning. Central South University, 2011, 18, 985-992.	0.5	5
176	Influences of melt spinning on electrochemical hydrogen storage performance of nanocrystalline and amorphous Mg2Ni-type alloys. Central South University, 2011, 18, 1825-1832.	0.5	5
177	Effects of Annealing Temperature on the Electrochemical Hydrogen Storage Behaviors of La-Mg-Ni-Based A2B7-Type Electrode Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2294-2303.	1.1	5
178	Gaseous hydrogen storage thermodynamics and kinetics of RE–Mg–Ni-based alloys prepared by mechanical milling. Journal of Central South University, 2017, 24, 773-781.	1.2	5
179	Degradation behaviors of La–Mg–Ni-based metal hydride alloys: structural stability and influence on hydrogen storage performances. Acta Metallurgica Sinica (English Letters), 2018, 31, 897-909.	1.5	5
180	Investigation of the microstructure and the thermodynamic and kinetic properties of ball-milled CeMg12-type composite materials as hydrogen storage materials. Materials Characterization, 2019, 156, 109824.	1.9	5

#	Article	IF	CITATIONS
181	Investigation of microstructure and electrochemical hydrogen storage thermodynamic and kinetic properties of ball-milled CeMg12-type composite materials. Materials and Design, 2019, 182, 108034.	3.3	5
182	Microstructural heredity of the La Mg Ni based electrode alloys during annealing. International Journal of Hydrogen Energy, 2019, 44, 29344-29355.	3.8	5
183	Structure and electrochemical performances of Mg20â~'xYxNi10 (xÂ=Â0–4) alloys prepared by mechanical milling. Rare Metals, 2019, 38, 954-964.	3.6	5
184	Electrochemical hydrogen storage performances of the nanocrystalline and amorphous (Mg24Ni10Cu2)100–xNdx (x=0–20) alloys applied to Ni-MH battery. Journal of Rare Earths, 2013, 31, 1175-1182.	2.5	4
185	Electrochemical characteristics of nanocrystalline and amorphous Mg–Y–Ni-based Mg2Ni-type alloys prepared by mechanical milling. International Journal of Materials Research, 2015, 106, 368-377.	0.1	4
186	Electrochemical hydrogen storage behaviour of as-cast and as-spun <i>RE</i> –Mg–Ni–Mn-based alloys applied to Ni–MH battery. International Journal of Materials Research, 2016, 107, 824-834.	0.1	4
187	Structure and electrochemical properties of LaMgNi4â^'x Co x (xÂ=Â0–0.8) hydrogen storage electrode alloys. Rare Metals, 2018, 37, 249-256.	3.6	4
188	Effect of catalysts on microstructure, hydrogen storage thermodynamics, and kinetics performance of La5Mg85Ni10 alloy. International Journal of Hydrogen Energy, 2019, 44, 24839-24848.	3.8	4
189	Hydrogen Storage Performances of Nanocrystalline and Amorphous NdMg11Ni + x wt% Ni (x = Alloys Synthesized by Mechanical Milling. Acta Metallurgica Sinica (English Letters), 2019, 32, 1089-1098.	100, 200) 1.5) 4
190	Hydrogen storage properties of La1â^'xPrxMgNi3.6Co0.4 (xÂ=Â0–0.4) alloys with annealing treatment. Rare Metals, 2019, 38, 871-876.	3.6	4
191	Structure and electrochemical hydrogen storage characteristics of nanocrystalline and amorphous MgNi-type alloy synthesized by mechanical milling. Journal of Iron and Steel Research International, 2020, 27, 952-963.	1.4	4
192	Adsorption of Aqueous Organic Dyes onto α-Fe2O3/Graphene Oxide: Insights into the Interaction Mechanism. ECS Journal of Solid State Science and Technology, 2020, 9, 121004.	0.9	4
193	Influence of substituting Ni with Co on hydriding and dehydriding kinetics of melt spun nanocrystalline and amorphous Mg2Ni-type alloys. Journal of Central South University, 2011, 18, 303-309.	1.2	3
194	Gaseous and electrochemical hydrogen storage kinetics of as-quenched nanocrystalline and amorphous Mg2Ni-type alloys. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 604-611.	0.4	3
195	Influences of substituting Ni with M (M=Cu, Co, Mn) on gaseous and electrochemical hydrogen storage kinetics of Mg20Ni10 alloys. Journal of Central South University, 2014, 21, 1705-1713.	1.2	3
196	Electrochemical hydrogen storage performances of the Si added La-Mg-Ni-based A2B7-type electrode alloys for Ni/MH battery application. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 166-174.	0.4	3
197	Hydriding/dehydriding properties of NdMgNi alloy with catalyst CeO2. Journal of Rare Earths, 2016, 34, 407-412.	2.5	3
198	Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling. International Journal of Materials Research, 2016, 107, 348-355.	0.1	3

#	Article	IF	CITATIONS
199	A comparison study of catalytic effects of MoS 2 and CeO 2 on hydrogen storage performances of as-milled SmMg 11 Ni alloy. Materials Chemistry and Physics, 2017, 202, 277-284.	2.0	3
200	Highly improved electrochemical performances of the nanocrystalline and amorphous Mg2Ni-type alloys by substituting Ni with M (M = Cu, Co, Mn). Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 685-694.	0.4	3
201	Improved hydrogen storage performance of as-milled Sm–Mg–Ni alloy by adding CeO2. Journal of Iron and Steel Research International, 2018, 25, 1255-1264.	1.4	3
202	Effects of Ni Content and Ball Milling Time on the Hydrogen Storage Thermodynamics and Kinetics Performances of La–Mg–Ni Ternary Alloys. Acta Metallurgica Sinica (English Letters), 2019, 32, 961-971.	1.5	3
203	Influence of melt spinning and annealing treatment on structures and hydrogen storage thermodynamic properties of La0.8Pr0.2MgNi3.6Co0.4 alloy. Journal of Iron and Steel Research International, 2020, 27, 114-120.	1.4	3
204	Electrochemical properties of as-cast La2-Y Mg16Ni (x = 0, 0.1, 0.2, 0.3, 0.4) alloys. Journal of Physics and Chemistry of Solids, 2021, 154, 110062.	1.9	3
205	Hydrogen storage kinetics of nanocrystalline and amorphous NdMg12-type alloy–Ni composites synthesized by mechanical milling. International Journal of Materials Research, 2016, 107, 605-614.	0.1	3
206	Hydrogen storage kinetics of as-cast and spun (Mg ₂₄ Ni ₁₀ Cu ₂ 100– <i>x</i> Nd _{<i>x</i>} (<i>x</i> = 0–20) alloys. International Journal of Materials Research, 2014, 105, 1159-1165.	0.1	2
207	Effect of melt spinning on gaseous hydrogen storage characteristics of nanocrystalline and amorphous Nd-added Mg2Ni-type alloys. Journal of Central South University, 2016, 23, 2754-2762.	1.2	2
208	Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6404-6412.	1.1	2
209	Structures and Electrochemical Hydrogen Storage Properties of the As-Spun RE-Mg-Ni-Co-Al-Based AB2-Type Alloys Applied to Ni-MH Battery. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2472-2482.	1.1	2
210	An Investigation on Hydrogen Storage Kinetics of the Nanocrystalline and Amorphous LaMg12-type Alloys Synthesized by Mechanical Milling. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 278-287.	0.4	2
211	Microstructure and Electrochemical Performance of CeMg12/Ni/TiF3 Composites for Hydrogen Storage. Journal of Materials Engineering and Performance, 2018, 27, 4507-4513.	1.2	2
212	Research on microstructure and catalysis effects on hydrogen storage alloy of nanosized three ions coâ€doped Ce _{1â^'3 <i>x</i>} Cu <i> _x </i> Fe <i> _x </i> Zn <i> _x </i> O ₂ . International Journal of Energy Research, 2020, 44, 5468-5476.	2.2	2
213	A catalytic mechanism investigation of TiF ₃ on hydriding/dehydriding properties of Mg ₈₅ Cu ₅ Ni ₁₀ alloy. RSC Advances, 2021, 11, 8940-8950.	1.7	2
214	Structures and Electrochemical Performances of As-spun RE-Mg-Ni-Mn-based Alloys Applied to Ni-MH Battery. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 812-822.	0.4	1
215	Hydrogen storage thermodynamic and dynamic properties of as-milled Ce Mg Ni-based CeMg12-type alloys. International Journal of Hydrogen Energy, 2019, 44, 19275-19284.	3.8	1
216	Highly ameliorated gaseous and electrochemical hydrogen storage kinetics of nanocrystalline and amorphous CeMg12-type alloys by mechanical milling. Solid State Sciences, 2019, 90, 41-48.	1.5	1

#	Article	IF	CITATIONS
217	Structure and electrochemical performances of as-milled LaMg12-type alloy–Ni composites. Journal of Iron and Steel Research International, 2019, 26, 59-68.	1.4	1
218	Highly improved hydrogen storage dynamics of nanocrystalline and amorphous NdMg12-type alloys by mechanical milling. Journal of Iron and Steel Research International, 2020, 27, 1236-1246.	1.4	1
219	Electrochemical Hydrogen Storage Performance of the Nanocrystalline and Amorphous Pr-Mg-Ni-based Alloys Synthesized by Mechanical Milling. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 116-126.	0.4	1
220	Improved hydrogen storage kinetics of nanocrystalline and amorphous Mg-Nd-Ni-Cu-based Mg2Ni-type alloys by adding Nd. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 1115-1124.	0.4	0
221	Hydrogen Storage Performances of REMg11Ni (REÂ=ÂSm, Y) Alloys Prepared by Mechanical Milling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 376-384.	1.1	0
222	Study on the gaseous and electrochemical hydrogen storage properties of as-milled Ce Mg Ni-based alloys. International Journal of Hydrogen Energy, 2019, 44, 29224-29234.	3.8	0
223	Magnetite Nanoparticles Decorated Graphene Oxide Composite as an Efficient and Recoverable Adsorbent for Removing Aqueous Ni(â¡), Pb(â¡). ECS Journal of Solid State Science and Technology, 2021, 10, 051008.	0.9	0