
Benjamin K Sovacool

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4691223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An agenda for sustainability transitions research: State of the art and future directions. Environmental Innovation and Societal Transitions, 2019, 31, 1-32.	2.5	1,305
2	What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Research and Social Science, 2014, 1, 1-29.	3.0	1,001
3	Electricity market design for the prosumer era. Nature Energy, 2016, 1, .	19.8	785
4	Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research and Social Science, 2018, 45, 12-42.	3.0	679
5	Energy justice: Conceptual insights and practical applications. Applied Energy, 2015, 142, 435-444.	5.1	644
6	How long will it take? Conceptualizing the temporal dynamics of energy transitions. Energy Research and Social Science, 2016, 13, 202-215.	3.0	608
7	Sociotechnical transitions for deep decarbonization. Science, 2017, 357, 1242-1244.	6.0	564
8	Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy, 2009, 37, 1095-1103.	4.2	524
9	Conceptualizing and measuring energy security: A synthesized approach. Energy, 2011, 36, 5343-5355.	4.5	439
10	Valuing the greenhouse gas emissions from nuclear power: A critical survey. Energy Policy, 2008, 36, 2950-2963.	4.2	434
11	New frontiers and conceptual frameworks for energy justice. Energy Policy, 2017, 105, 677-691.	4.2	395
12	The political economy of energy poverty: A review of key challenges. Energy for Sustainable Development, 2012, 16, 272-282.	2.0	388
13	Energy decisions reframed as justice and ethical concerns. Nature Energy, 2016, 1, .	19.8	363
14	Connecting climate action with other Sustainable Development Goals. Nature Sustainability, 2019, 2, 674-680.	11.5	363
15	The Socio-Technical Dynamics of Low-Carbon Transitions. Joule, 2017, 1, 463-479.	11.7	336
16	Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework. Energy Research and Social Science, 2018, 37, 175-190.	3.0	331
17	Sustainable minerals and metals for a low-carbon future. Science, 2020, 367, 30-33.	6.0	325
18	It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Research and Social Science, 2019, 52, 144-158.	3.0	297

#	Article	IF	CITATIONS
19	Twelve metropolitan carbon footprints: A preliminary comparative global assessment. Energy Policy, 2010, 38, 4856-4869.	4.2	294
20	Ordering theories: Typologies and conceptual frameworks for sociotechnical change. Social Studies of Science, 2017, 47, 703-750.	1.5	291
21	Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. Energy Policy, 2014, 65, 229-244.	4.2	287
22	Competing Dimensions of Energy Security: An International Perspective. Annual Review of Environment and Resources, 2010, 35, 77-108.	5.6	272
23	Integrating social science in energy research. Energy Research and Social Science, 2015, 6, 95-99.	3.0	271
24	Rejecting renewables: The socio-technical impediments to renewable electricity in the United States. Energy Policy, 2009, 37, 4500-4513.	4.2	267
25	The uniqueness of the energy security, justice, and governance problem. Energy Policy, 2012, 41, 232-240.	4.2	250
26	Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews, 2014, 37, 249-264.	8.2	238
27	Resolving society's energy trilemma through the Energy Justice Metric. Energy Policy, 2015, 87, 168-176.	4.2	238
28	Energy justice in the transition to low carbon energy systems: Exploring key themes in interdisciplinary research. Applied Energy, 2019, 233-234, 916-921.	5.1	231
29	Diversity: Energy studies need social science. Nature, 2014, 511, 529-530.	13.7	225
30	Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and Sustainable Energy Reviews, 2020, 120, 109663.	8.2	223
31	Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Reviews, 2014, 37, 1-12.	8.2	220
32	Who governs energy? The challenges facing global energy governance. Energy Policy, 2009, 37, 5239-5248.	4.2	213
33	A conceptual framework for understanding the social acceptance of energy infrastructure: Insights from energy storage. Energy Policy, 2017, 107, 27-31.	4.2	207
34	Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change. Energy Policy, 2018, 117, 66-74.	4.2	202
35	Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. Energy Research and Social Science, 2018, 40, 23-35.	3.0	201
36	Evaluating energy security performance from 1990 to 2010 for eighteen countries. Energy, 2011, 36, 5846-5853.	4.5	198

#	Article	IF	CITATIONS
37	An international comparison of four polycentric approaches to climate and energy governance. Energy Policy, 2011, 39, 3832-3844.	4.2	197
38	Conceptualizing the acceptance of wind and solar electricity. Renewable and Sustainable Energy Reviews, 2012, 16, 5268-5279.	8.2	195
39	Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. Energy Research and Social Science, 2021, 73, 101916.	3.0	189
40	Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Climatic Change, 2019, 155, 581-619.	1.7	177
41	Towards a science of climate and energy choices. Nature Climate Change, 2016, 6, 547-555.	8.1	173
42	The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?. Utilities Policy, 2009, 17, 288-296.	2.1	172
43	Industrial decarbonization via hydrogen: A critical and systematic review of developments, socio-technical systems and policy options. Energy Research and Social Science, 2021, 80, 102208.	3.0	171
44	Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions. Renewable and Sustainable Energy Reviews, 2021, 141, 110759.	8.2	170
45	Evaluating energy security in the Asia pacific: Towards a more comprehensive approach. Energy Policy, 2011, 39, 7472-7479.	4.2	165
46	The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Global Environmental Change, 2018, 52, 86-100.	3.6	165
47	Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renewable and Sustainable Energy Reviews, 2016, 53, 178-184.	8.2	162
48	Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety. Energy Research and Social Science, 2019, 48, 96-107.	3.0	155
49	Sociotechnical agendas: Reviewing future directions for energy and climate research. Energy Research and Social Science, 2020, 70, 101617.	3.0	154
50	Policy mechanisms to accelerate electric vehicle adoption: A qualitative review from the Nordic region. Renewable and Sustainable Energy Reviews, 2018, 94, 719-731.	8.2	151
51	The importance of comprehensiveness in renewable electricity and energy-efficiency policy. Energy Policy, 2009, 37, 1529-1541.	4.2	148
52	A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response. Energy Policy, 2020, 138, 111221.	4.2	147
53	A systematic review of the energy and climate impacts of teleworking. Environmental Research Letters, 2020, 15, 093003.	2.2	147
54	The neglected social dimensions to a vehicle-to-grid (V2G) transition: a critical and systematic review. Environmental Research Letters, 2018, 13, 013001.	2.2	145

#	Article	IF	CITATIONS
55	An international assessment of energy security performance. Ecological Economics, 2013, 88, 148-158.	2.9	138
56	Identifying future electricity–water tradeoffs in the United States. Energy Policy, 2009, 37, 2763-2773.	4.2	137
57	Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity. Energy Policy, 2009, 37, 2241-2248.	4.2	137
58	Quantifying, measuring, and strategizing energy security: Determining the most meaningful dimensions and metrics. Energy, 2014, 76, 838-849.	4.5	137
59	The political economy of climate adaptation. Nature Climate Change, 2015, 5, 616-618.	8.1	136
60	The misallocation of climate research funding. Energy Research and Social Science, 2020, 62, 101349.	3.0	135
61	Contextualizing the Covid-19 pandemic for a carbon-constrained world: Insights for sustainability transitions, energy justice, and research methodology. Energy Research and Social Science, 2020, 68, 101701.	3.0	135
62	The cultural barriers to renewable energy and energy efficiency in the United States. Technology in Society, 2009, 31, 365-373.	4.8	134
63	The costs of failure: A preliminary assessment of major energy accidents, 1907–2007. Energy Policy, 2008, 36, 1802-1820.	4.2	133
64	The precarious political economy of cobalt: Balancing prosperity, poverty, and brutality in artisanal and industrial mining in the Democratic Republic of the Congo. The Extractive Industries and Society, 2019, 6, 915-939.	0.7	131
65	Prioritizing low-carbon energy sources to enhance China's energy security. Energy Conversion and Management, 2015, 92, 129-136.	4.4	129
66	Fuel poverty, affordability, and energy justice in England: Policy insights from the Warm Front Program. Energy, 2015, 93, 361-371.	4.5	129
67	Assessing the socio-demographic, technical, economic and behavioral factors of Nordic electric vehicle adoption and the influence of vehicle-to-grid preferences. Renewable and Sustainable Energy Reviews, 2020, 121, 109692.	8.2	127
68	Vulnerability and resistance in the United Kingdom's smart meter transition. Energy Policy, 2017, 109, 767-781.	4.2	126
69	Further reflections on the temporality of energy transitions: A response to critics. Energy Research and Social Science, 2016, 22, 232-237.	3.0	125
70	New partnerships and business models for facilitating energy access. Energy Policy, 2012, 47, 48-55.	4.2	124
71	Building responsiveness to climate change through community based adaptation in Bangladesh. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 845-863.	1.0	123
72	The Future Promise of Vehicle-to-Grid (V2G) Integration: A Sociotechnical Review and Research Agenda. Annual Review of Environment and Resources, 2017, 42, 377-406.	5.6	123

#	Article	IF	CITATIONS
73	Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review. Renewable and Sustainable Energy Reviews, 2020, 131, 109963.	8.2	123
74	The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province. Energy Policy, 2010, 38, 1202-1209.	4.2	121
75	Reviewing, Reforming, and Rethinking Global Energy Subsidies: Towards a Political Economy Research Agenda. Ecological Economics, 2017, 135, 150-163.	2.9	119
76	The decarbonisation divide: Contextualizing landscapes of low-carbon exploitation and toxicity in Africa. Global Environmental Change, 2020, 60, 102028.	3.6	119
77	An international comparative assessment of construction cost overruns for electricity infrastructure. Energy Research and Social Science, 2014, 3, 152-160.	3.0	117
78	Hard and soft paths for climate change adaptation. Climate Policy, 2011, 11, 1177-1183.	2.6	116
79	The roles of users in electric, shared and automated mobility transitions. Transportation Research, Part D: Transport and Environment, 2019, 71, 1-21.	3.2	116
80	Who buys New Energy Vehicles in China? Assessing social-psychological predictors of purchasing awareness, intention, and policy. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58, 56-69.	1.8	114
81	Contestation, contingency, and justice in the Nordic low-carbon energy transition. Energy Policy, 2017, 102, 569-582.	4.2	112
82	Conceptualizing urban household energy use: Climbing the "Energy Services Ladder― Energy Policy, 2011, 39, 1659-1668.	4.2	110
83	What moves and works: Broadening the consideration of energy poverty. Energy Policy, 2012, 42, 715-719.	4.2	109
84	The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries. Renewable and Sustainable Energy Reviews, 2020, 119, 109569.	8.2	109
85	Sociotechnical matters: Reviewing and integrating science and technology studies with energy social science. Energy Research and Social Science, 2020, 65, 101462.	3.0	108
86	Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion. Energy Policy, 2018, 116, 422-432.	4.2	106
87	Energy Governance, Transnational Rules, and the Resource Curse: Exploring the Effectiveness of the Extractive Industries Transparency Initiative (EITI). World Development, 2016, 83, 179-192.	2.6	105
88	The whole systems energy injustice of four European low-carbon transitions. Global Environmental Change, 2019, 58, 101958.	3.6	104
89	Energy policymaking in Denmark: Implications for global energy security and sustainability. Energy Policy, 2013, 61, 829-839.	4.2	101
90	Policy mixes for incumbency: Exploring the destructive recreation of renewable energy, shale gas â€ [~] fracking,' and nuclear power in the United Kingdom. Energy Research and Social Science, 2017, 33, 147-162.	3.0	100

#	Article	IF	CITATIONS
91	Temporality, vulnerability, and energy justice in household low carbon innovations. Energy Policy, 2019, 128, 495-504.	4.2	99
92	Beyond emissions and economics: Rethinking the co-benefits of electric vehicles (EVs) and vehicle-to-grid (V2G). Transport Policy, 2018, 71, 130-137.	3.4	98
93	Forever stuck in old ways? Pluralising incumbencies in sustainability transitions. Environmental Innovation and Societal Transitions, 2020, 35, 180-184.	2.5	98
94	Experts, theories, and electric mobility transitions: Toward an integrated conceptual framework for the adoption of electric vehicles. Energy Research and Social Science, 2017, 27, 78-95.	3.0	97
95	Bamboo Beating Bandits: Conflict, Inequality, and Vulnerability in the Political Ecology of Climate Change Adaptation in Bangladesh. World Development, 2018, 102, 183-194.	2.6	97
96	Sustainability, shale gas, and energy transition in China: Assessing barriers and prioritizing strategic measures. Energy, 2015, 84, 551-562.	4.5	96
97	Harnessing social innovation for energy justice: A business model perspective. Energy Policy, 2017, 107, 631-639.	4.2	96
98	Measuring energy security performance within China: Toward an inter-provincial prospective. Energy, 2017, 125, 825-836.	4.5	95
99	Six policy intervention points for sustainability transitions: A conceptual framework and a systematic literature review. Research Policy, 2020, 49, 104072.	3.3	95
100	Differences in carbon emissions reduction between countries pursuing renewable electricity versus nuclear power. Nature Energy, 2020, 5, 928-935.	19.8	95
101	Elite power in low-carbon transitions: A critical and interdisciplinary review. Energy Research and Social Science, 2019, 57, 101242.	3.0	93
102	The socio-technical barriers to Solar Home Systems (SHS) in Papua New Guinea: " Choosing pigs, prostitutes, and poker chips over panels ― Energy Policy, 2011, 39, 1532-1542.	4.2	92
103	Contextualizing climate justice activism: Knowledge, emotions, motivations, and actions among climate strikers in six cities. Global Environmental Change, 2020, 65, 102180.	3.6	92
104	Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review. Renewable and Sustainable Energy Reviews, 2017, 69, 197-206.	8.2	91
105	Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment. Energy Economics, 2019, 78, 525-534.	5.6	91
106	China's energy security: The perspective of energy users. Applied Energy, 2011, 88, 1949-1956.	5.1	90
107	Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses. Energy, 2014, 74, 906-917.	4.5	90
108	A qualitative factor analysis of renewable energy and Sustainable Energy for All (SE4ALL) in the Asia-Pacific. Energy Policy, 2013, 59, 393-403.	4.2	89

#	Article	IF	CITATIONS
109	Does transparency matter? Evaluating the governance impacts of the Extractive Industries Transparency Initiative (EITI) in Azerbaijan and Liberia. Resources Policy, 2015, 45, 183-192.	4.2	89
110	Decarbonizing the food and beverages industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renewable and Sustainable Energy Reviews, 2021, 143, 110856.	8.2	89
111	Understanding attitudes toward energy security: Results of a cross-national survey. Global Environmental Change, 2013, 23, 609-622.	3.6	87
112	Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport. Ecological Economics, 2019, 157, 205-217.	2.9	87
113	Examining the Small Renewable Energy Power (SREP) Program in Malaysia. Energy Policy, 2011, 39, 7244-7256.	4.2	86
114	Forty years of energy security trends: A comparative assessment of 22 industrialized countries. Energy Research and Social Science, 2014, 4, 64-77.	3.0	86
115	Energy and environmental attitudes in the green state of Denmark: Implications for energy democracy, low carbon transitions, and energy literacy. Environmental Science and Policy, 2015, 54, 304-315.	2.4	86
116	The methodologies, geographies, and technologies of energy justice: a systematic and comprehensive review. Environmental Research Letters, 2021, 16, 043009.	2.2	86
117	Decarbonizing the iron and steel industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research and Social Science, 2022, 89, 102565.	3.0	86
118	Dismissive and deceptive car dealerships create barriers to electric vehicle adoption at the point of sale. Nature Energy, 2018, 3, 501-507.	19.8	85
119	The future of coal in a carbon-constrained climate. Nature Climate Change, 2020, 10, 704-707.	8.1	85
120	Scaling the policy response to climate change. Policy and Society, 2009, 27, 317-328.	2.9	84
121	Technological diffusion as a process of societal embedding: Lessons from historical automobile transitions for future electric mobility. Transportation Research, Part D: Transport and Environment, 2019, 71, 47-66.	3.2	84
122	Equity, technological innovation and sustainable behaviour in a low-carbon future. Nature Human Behaviour, 2022, 6, 326-337.	6.2	83
123	Exploring Scientific Misconduct: Isolated Individuals, Impure Institutions, or an Inevitable Idiom of Modern Science?. Journal of Bioethical Inquiry, 2008, 5, 271-282.	0.9	81
124	Bridging the Gaps in Global Energy Governance. Global Governance, 2011, 17, 57-74.	0.4	80
125	The political economy of technological capabilities and global production networks in South Africa's wind and solar photovoltaic (PV) industries. Political Geography, 2017, 60, 1-12.	1.3	80
126	How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas. Energy Policy, 2019, 132, 1092-1100.	4.2	80

#	Article	IF	CITATIONS
127	A Critical Evaluation of Nuclear Power and Renewable Electricity in Asia. Journal of Contemporary Asia, 2010, 40, 369-400.	1.1	78
128	Construction Cost Overruns and Electricity Infrastructure: An Unavoidable Risk?. Electricity Journal, 2014, 27, 112-120.	1.3	78
129	Energy justice and the contested petroleum politics of stranded assets: Policy insights from the YasunA-ITT Initiative in Ecuador. Energy Policy, 2016, 95, 158-171.	4.2	76
130	Of temporality and plurality: an epistemic and governance agenda for accelerating just transitions for energy access and sustainable development. Current Opinion in Environmental Sustainability, 2018, 34, 1-6.	3.1	76
131	A comparative analysis of renewable electricity support mechanisms for Southeast Asia. Energy, 2010, 35, 1779-1793.	4.5	75
132	Expanding renewable energy access with pro-poor public private partnerships in the developing world. Energy Strategy Reviews, 2013, 1, 181-192.	3.3	75
133	Enhancing China's energy security: Determining influential factors and effective strategic measures. Energy Conversion and Management, 2014, 88, 589-597.	4.4	73
134	Imagined people, behaviour and future mobility: Insights from visions of electric vehicles and car clubs in the United Kingdom. Transport Policy, 2017, 59, 165-173.	3.4	73
135	Understanding the socio-technical nexus of Nordic electric vehicle (EV) barriers: A qualitative discussion of range, price, charging and knowledge. Energy Policy, 2020, 138, 111292.	4.2	73
136	Competing policy packages and the complexity of energy security. Energy, 2014, 67, 641-651.	4.5	72
137	Of Disasters and Dragon Kings: A Statistical Analysis of Nuclear Power Incidents and Accidents. Risk Analysis, 2017, 37, 99-115.	1.5	72
138	Determining the life cycle energy efficiency of six biofuel systems in China: A Data Envelopment Analysis. Bioresource Technology, 2014, 162, 1-7.	4.8	71
139	Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar City. Energy Research and Social Science, 2020, 62, 101368.	3.0	71
140	Exploring propositions about perceptions of energy security: An international survey. Environmental Science and Policy, 2012, 16, 44-64.	2.4	70
141	Differing cultures of energy security: An international comparison of public perceptions. Renewable and Sustainable Energy Reviews, 2016, 55, 811-822.	8.2	70
142	Reassessing the safety of nuclear power. Energy Research and Social Science, 2016, 15, 96-100.	3.0	70
143	Halting hydro: A review of the socio-technical barriers to hydroelectric power plants in Nepal. Energy, 2011, 36, 3468-3476.	4.5	69
144	Dispossessed by decarbonisation: Reducing vulnerability, injustice, and inequality in the lived experience of low-carbon pathways. World Development, 2021, 137, 105116.	2.6	69

#	Article	IF	CITATIONS
145	Why Did Better Place Fail?: Range anxiety, interpretive flexibility, and electric vehicle promotion in Denmark and Israel. Energy Policy, 2016, 94, 377-386.	4.2	68
146	Culture and low-carbon energy transitions. Nature Sustainability, 2020, 3, 685-693.	11.5	68
147	Guides or gatekeepers? Incumbent-oriented transition intermediaries in a low-carbon era. Energy Research and Social Science, 2020, 66, 101490.	3.0	66
148	Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica. Renewable Energy, 2010, 35, 1715-1723.	4.3	65
149	Behind an ambitious megaproject in Asia: The history and implications of the Bakun hydroelectric dam in Borneo. Energy Policy, 2011, 39, 4842-4859.	4.2	65
150	Energy security and hydropower development in Malaysia: The drivers and challenges facing the Sarawak Corridor of Renewable Energy (SCORE). Renewable Energy, 2012, 40, 113-129.	4.3	63
151	Improving Access to Modern Energy Services: Insights from Case Studies. Electricity Journal, 2012, 25, 93-114.	1.3	63
152	Energy transitions from the cradle to the grave: A meta-theoretical framework integrating responsible innovation, social practices, and energy justice. Energy Research and Social Science, 2021, 75, 102027.	3.0	63
153	Symbolic convergence and the hydrogen economy. Energy Policy, 2010, 38, 1999-2012.	4.2	62
154	Thinking big: Politics, progress, and security in the management of Asian and European energy megaprojects. Energy Policy, 2014, 74, 16-27.	4.2	61
155	The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams. Renewable and Sustainable Energy Reviews, 2021, 137, 110495.	8.2	61
156	Design principles for renewable energy programs in developing countries. Energy and Environmental Science, 2012, 5, 9157.	15.6	59
157	The methodological challenges of creating a comprehensive energy security index. Energy Policy, 2012, 48, 835-840.	4.2	59
158	Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China. Transportation Research, Part A: Policy and Practice, 2019, 124, 69-81.	2.0	59
159	The market case for electric mobility: Investigating electric vehicle business models for mass adoption. Energy, 2020, 194, 116841.	4.5	59
160	The socio-political economy of nuclear power development in Japan and South Korea. Energy Policy, 2010, 38, 7971-7979.	4.2	58
161	Expert views of climate change adaptation in least developed Asia. Journal of Environmental Management, 2012, 97, 78-88.	3.8	58
162	Fuel poverty, excess winter deaths, and energy costs in Vermont: Burdensome for whom?. Energy Policy, 2016, 90, 81-91.	4.2	58

#	Article	IF	CITATIONS
163	New Dimensions of Vulnerability to Energy and Transport Poverty. Joule, 2021, 5, 3-7.	11.7	58
164	Developing an 'energy sustainability index' to evaluate energy policy. Interdisciplinary Science Reviews, 2007, 32, 335-349.	1.0	56
165	Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network. Energy Policy, 2009, 37, 2356-2367.	4.2	56
166	Balancing safety with sustainability: assessing the risk of accidents for modern low-carbon energy systems. Journal of Cleaner Production, 2016, 112, 3952-3965.	4.6	56
167	Conflicted transitions: Exploring the actors, tactics, and outcomes of social opposition against energy infrastructure. Global Environmental Change, 2022, 73, 102473.	3.6	56
168	Wind Turbines and Invisible Technology: Unarticulated Reasons for Local Opposition to Wind Energy. Technology and Culture, 2013, 54, 705-734.	0.0	55
169	Functional, symbolic and societal frames for automobility: Implications for sustainability transitions. Transportation Research, Part A: Policy and Practice, 2018, 118, 730-746.	2.0	55
170	Barriers to the diffusion of climate-friendly technologies. International Journal of Technology Transfer and Commercialisation, 2011, 10, 43.	0.2	54
171	The trials and tribulations of the Village Energy Security Programme (VESP) in India. Energy Policy, 2013, 57, 407-417.	4.2	54
172	Reconfiguration, Contestation, and Decline. Science Technology and Human Values, 2018, 43, 1066-1097.	1.7	54
173	Summoning earth and fire: The energy development implications of Grameen Shakti (GS) in Bangladesh. Energy, 2011, 36, 4445-4459.	4.5	53
174	Perceptions of climate change risks and resilient island planning in the Maldives. Mitigation and Adaptation Strategies for Global Change, 2012, 17, 731-752.	1.0	53
175	Are electric vehicles masculinized? Gender, identity, and environmental values in Nordic transport practices and vehicle-to-grid (V2G) preferences. Transportation Research, Part D: Transport and Environment, 2019, 72, 187-202.	3.2	53
176	Energy Security, Equality and Justice. , 0, , .		53
177	Going Completely Renewable: Is It Possible (Let Alone Desirable)?. Electricity Journal, 2009, 22, 95-111.	1.3	52
178	Competing discourses of energy development: The implications of the Medupi coal-fired power plant in South Africa. Global Environmental Change, 2011, 21, 1141-1151.	3.6	52
179	The policy challenges of tradable credits: A critical review of eight markets. Energy Policy, 2011, 39, 575-585.	4.2	52
180	Public perceptions of electric vehicles and vehicle-to-grid (V2G): Insights from a Nordic focus group study. Transportation Research, Part D: Transport and Environment, 2019, 74, 277-293.	3.2	52

#	Article	IF	CITATIONS
181	The political economy of oil and gas in Southeast Asia: heading towards the natural resource curse?. Pacific Review, 2010, 23, 225-259.	1.3	51
182	Viability of hydrogen pathways that enhance energy security: A comparison of China and Denmark. International Journal of Hydrogen Energy, 2014, 39, 15320-15329.	3.8	51
183	Cost overruns and financial risk in the construction of nuclear power reactors: A critical appraisal. Energy Policy, 2017, 102, 644-649.	4.2	51
184	Climate change adaptation and the Least Developed Countries Fund (LDCF): Qualitative insights from policy implementation in the Asia-Pacific. Climatic Change, 2017, 140, 209-226.	1.7	50
185	Bloated bodies and broken bricks: Power, ecology, and inequality in the political economy of natural disaster recovery. World Development, 2018, 110, 243-255.	2.6	50
186	Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom. Energy Policy, 2020, 139, 111330.	4.2	50
187	Confronting energy poverty behind the bamboo curtain: A review of challenges and solutions for Myanmar (Burma). Energy for Sustainable Development, 2013, 17, 305-314.	2.0	49
188	Of "white crows―and "cash savers:―A qualitative study of travel behavior and perceptions of ridesharing in Denmark. Transportation Research, Part A: Policy and Practice, 2015, 78, 113-123.	2.0	49
189	Monitoring the moneylenders: Institutional accountability and environmental governance at the World Bank's Inspection Panel. The Extractive Industries and Society, 2017, 4, 893-903.	0.7	49
190	Deploying Off-Grid Technology to Eradicate Energy Poverty. Science, 2012, 338, 47-48.	6.0	48
191	The energy-enterprise-gender nexus: Lessons from the Multifunctional Platform (MFP) in Mali. Renewable Energy, 2013, 50, 115-125.	4.3	48
192	Quantifying the health and environmental benefits of wind power to natural gas. Energy Policy, 2013, 53, 429-441.	4.2	48
193	Profiling technological failure and disaster in the energy sector: AÂcomparative analysis of historical energy accidents. Energy, 2015, 90, 2016-2027.	4.5	48
194	Looking the wrong way: Bias, renewable electricity, and energy modelling in the United States. Energy, 2016, 94, 533-541.	4.5	48
195	Disequilibrium in Development Finance: The Contested Politics of Institutional Accountability and Transparency at the World Bank Inspection Panel. Development and Change, 2019, 50, 867-895.	2.0	48
196	Making the Ethical and Philosophical Case for "Energy Justice― Environmental Ethics, 2015, 37, 145-168.	0.2	48
197	Cooperative or Inoperative? Accountability and Transparency at the World Bank's Inspection Panel. Case Studies in the Environment, 2017, 1, 1-9.	0.4	47
198	Critically reviewing smart home technology applications and business models in Europe. Energy Policy, 2020, 144, 111631.	4.2	47

12

#	Article	IF	CITATIONS
199	The hidden costs of energy and mobility: A global meta-analysis and research synthesis of electricity and transport externalities. Energy Research and Social Science, 2021, 72, 101885.	3.0	47
200	The avian benefits of wind energy: A 2009 update. Renewable Energy, 2013, 49, 19-24.	4.3	46
201	Grand Designs: Assessing the African Energy Security Implications of the Grand Inga Dam. African Studies Review, 2015, 58, 133-158.	0.2	46
202	Internationalizing the political economy of hydroelectricity: security, development and sustainability in hydropower states. Review of International Political Economy, 2019, 26, 49-79.	3.2	45
203	Decarbonizing the oil refining industry: A systematic review of sociotechnical systems, technological innovations, and policy options. Energy Research and Social Science, 2022, 89, 102542.	3.0	45
204	Energy and Security. , 0, , 325-384.		44
205	Reviewing Nordic transport challenges and climate policy priorities: Expert perceptions of decarbonisation in Denmark, Finland, Iceland, Norway, Sweden. Energy, 2018, 165, 532-542.	4.5	44
206	When subterranean slavery supports sustainability transitions? power, patriarchy, and child labor in artisanal Congolese cobalt mining. The Extractive Industries and Society, 2021, 8, 271-293.	0.7	44
207	What are the social outcomes of climate policies? A systematic map and review of the ex-post literature. Environmental Research Letters, 2020, 15, 113006.	2.2	44
208	The Political Economy of Climate Change Adaptation. , 2016, , .		43
209	What is the state of the art in energy and transport poverty metrics? A critical and comprehensive review. Energy Economics, 2021, 101, 105360.	5.6	43
210	Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renewable and Sustainable Energy Reviews, 2022, 155, 111885.	8.2	43
211	Cooking with gas: Policy lessons from Rwanda's National Domestic Biogas Program (NDBP). Energy for Sustainable Development, 2013, 17, 347-356.	2.0	42
212	From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions. Policy Sciences, 2019, 52, 573-600.	1.5	42
213	The socio-political economy of nuclear energy in China and India. Energy, 2010, 35, 3803-3813.	4.5	41
214	Benign mobility? Electric bicycles, sustainable transport consumption behaviour and socio-technical transitions in Nanjing, China. Transportation Research, Part A: Policy and Practice, 2017, 103, 223-234.	2.0	41
215	Towards improved solar energy justice: Exploring the complex inequities of household adoption of photovoltaic panels. Energy Policy, 2022, 164, 112868.	4.2	41

#	Article	IF	CITATIONS
217	Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. Environmental Research Letters, 2021, 16, 113003.	2.2	40
218	Fantastic Futures and Three American Energy Transitions. Science As Culture, 2013, 22, 204-212.	2.4	39
219	Rethinking energy security and services in practice: National vulnerability and three energy pathways in Tajikistan. Energy Policy, 2018, 114, 39-50.	4.2	39
220	Processes of elite power and low-carbon pathways: Experimentation, financialisation, and dispossession. Global Environmental Change, 2019, 59, 101985.	3.6	39
221	Solving the oil independence problem: Is it possible?. Energy Policy, 2007, 35, 5505-5514.	4.2	38
222	Exploring and Contextualizing Public Opposition to Renewable Electricity in the United States. Sustainability, 2009, 1, 702-721.	1.6	38
223	Electrification in the Mountain Kingdom: The implications of the Nepal Power Development Project (NPDP). Energy for Sustainable Development, 2011, 15, 254-265.	2.0	38
224	What's the state of energy studies research?: A content analysis of three leading journals from 1999 to 2008. Energy, 2011, 36, 508-519.	4.5	38
225	Navigating expert skepticism and consumer distrust: Rethinking the barriers to vehicle-to-grid (V2G) in the Nordic region. Transport Policy, 2019, 76, 67-77.	3.4	38
226	Contested visions and sociotechnical expectations of electric mobility and vehicle-to-grid innovation in five Nordic countries. Environmental Innovation and Societal Transitions, 2019, 31, 170-183.	2.5	38
227	Imagining sustainable energy and mobility transitions: Valence, temporality, and radicalism in 38 visions of a low-carbon future. Social Studies of Science, 2020, 50, 642-679.	1.5	38
228	Energy & Ethics. , 2013, , .		37
229	Scaling and commercializing mobile biogas systems in Kenya: A qualitative pilot study. Renewable Energy, 2015, 76, 115-125.	4.3	37
230	Optimizing innovation, carbon and health in transport: Assessing socially optimal electric mobility and vehicle-to-grid pathways in Denmark. Energy, 2018, 153, 628-637.	4.5	37
231	The discursive politics of â€~fracking': Frames, storylines, and the anticipatory contestation of shale gas development in the United Kingdom. Global Environmental Change, 2019, 58, 101935.	3.6	37
232	Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems. Renewable and Sustainable Energy Reviews, 2022, 157, 112081.	8.2	37
233	Improving climate change adaptation in least developed Asia. Environmental Science and Policy, 2012, 21, 112-125.	2.4	36
234	Assessing energy security performance in the Asia Pacific, 1990–2010. Renewable and Sustainable Energy Reviews, 2013, 17, 228-247.	8.2	36

#	Article	IF	CITATIONS
235	One style to build them all: Corporate culture and innovation in the offshore wind industry. Energy Policy, 2015, 86, 402-415.	4.2	36
236	Cost performance and risk in the construction of offshore and onshore wind farms. Wind Energy, 2017, 20, 891-908.	1.9	36
237	Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe. Ecological Economics, 2020, 169, 106529.	2.9	36
238	Is the Danish Wind Energy Model Replicable for Other Countries?. Electricity Journal, 2008, 21, 27-38.	1.3	35
239	Realizing rural electrification in Southeast Asia: Lessons from Laos. Energy for Sustainable Development, 2011, 15, 41-48.	2.0	35
240	Oil, Energy Poverty and Resource Dependence in West Africa. Journal of Energy and Natural Resources Law, 2013, 31, 33-53.	0.3	35
241	Expert perceptions of low-carbon transitions: Investigating the challenges of electricity decarbonisation in the Nordic region. Energy, 2018, 148, 1162-1172.	4.5	35
242	The death of a transport regime? The future of electric bicycles and transportation pathways for sustainable mobility in China. Technological Forecasting and Social Change, 2018, 132, 255-267.	6.2	35
243	Success and failure in the political economy of solar electrification: Lessons from World Bank Solar Home System (SHS) projects in Sri Lanka and Indonesia. Energy Policy, 2018, 123, 482-493.	4.2	35
244	Energy cultures and national decarbonisation pathways. Renewable and Sustainable Energy Reviews, 2021, 137, 110592.	8.2	35
245	Improving adaptive capacity and resilience in Bhutan. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 515-533.	1.0	34
246	Stretching, embeddedness, and scripts in a sociotechnical transition: Explaining the failure of electric mobility at Better Place (2007–2013). Technological Forecasting and Social Change, 2017, 123, 24-34.	6.2	34
247	Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development. Energy Policy, 2018, 120, 1-7.	4.2	34
248	Contested smart and low-carbon energy futures: Media discourses of smart meters in the United Kingdom. Journal of Cleaner Production, 2018, 195, 978-990.	4.6	34
249	Exploring the role of failure in socio-technical transitions research. Environmental Innovation and Societal Transitions, 2020, 37, 267-289.	2.5	34
250	Transitioning to a sustainable development framework for bioenergy in Malaysia: policy suggestions to catalyse the utilisation of palm oil mill residues. Energy, Sustainability and Society, 2020, 10, .	1.7	34
251	Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation [*] . Environmental Research Letters, 2021, 16, 033001.	2.2	34
252	Decarbonizing household heating: Reviewing demographics, geography and low-carbon practices and preferences in five European countries. Renewable and Sustainable Energy Reviews, 2021, 139, 110703.	8.2	34

#	Article	IF	CITATIONS
253	Global sustainability, innovation and governance dynamics of national smart electricity meter transitions. Global Environmental Change, 2021, 68, 102272.	3.6	34
254	Politicising the Just Transition: Linking global climate policy, Nationally Determined Contributions and targeted research agendas. Geoforum, 2020, 115, 138-142.	1.4	34
255	A comparative study of littering and waste in Singapore and Japan. Resources, Conservation and Recycling, 2012, 61, 35-42.	5.3	33
256	The geography of energy and education: Leaders, laggards, and lessons for achieving primary and secondary school electrification. Renewable and Sustainable Energy Reviews, 2016, 58, 107-123.	8.2	33
257	Mobility, food and housing: responsibility, individual consumption and demand-side policies in European deep decarbonisation pathways. Energy Efficiency, 2019, 12, 497-519.	1.3	33
258	The financial risks and barriers to electricity infrastructure in Kenya, Tanzania, and Mozambique: A critical and systematic review of the academic literature. Energy Policy, 2019, 125, 145-153.	4.2	33
259	The coproduction of electric mobility: Selectivity, conformity and fragmentation in the sociotechnical acceptance of vehicle-to-grid (V2G) standards. Journal of Cleaner Production, 2019, 207, 400-410.	4.6	33
260	Reckless or righteous? Reviewing the sociotechnical benefits and risks of climate change geoengineering. Energy Strategy Reviews, 2021, 35, 100656.	3.3	33
261	Examining the Complications of Global Energy Governance. Journal of Energy and Natural Resources Law, 2012, 30, 235-263.	0.3	32
262	Hydrogen technological innovation systems in practice: comparing Danish and American approaches to fuel cell development. Journal of Cleaner Production, 2015, 94, 359-368.	4.6	32
263	Political economy, poverty, and polycentrism in the Global Environment Facility's Least Developed Countries Fund (LDCF) for Climate Change Adaptation. Third World Quarterly, 2017, 38, 1249-1271.	1.3	32
264	Toxic transitions in the lifecycle externalities of a digital society: The complex afterlives of electronic waste in Ghana. Resources Policy, 2019, 64, 101459.	4.2	32
265	Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renewable and Sustainable Energy Reviews, 2022, 167, 112706.	8.2	32
266	Expert views of climate change adaptation in the Maldives. Climatic Change, 2012, 114, 295-300.	1.7	31
267	Deconstructing facts and frames in energy research: Maxims for evaluating contentious problems. Energy Policy, 2015, 86, 36-42.	4.2	31
268	All hands on deck: polycentric governance for climate change insurance. Climatic Change, 2016, 139, 129-140.	1.7	31
269	Benchmarking natural gas and coal-fired electricity generation in the United States. Energy, 2017, 134, 622-628.	4.5	31
270	The Dragon awakens: Innovation, competition, and transition in the energy strategy of the People's Republic of China, 1949–2017. Energy Policy, 2017, 108, 634-644.	4.2	31

#	Article	IF	CITATIONS
271	Justice, poverty, and electricity decarbonization. Electricity Journal, 2019, 32, 47-51.	1.3	31
272	Equity implications of climate policy: Assessing the social and distributional impacts of emission reduction targets in the European Union. Energy, 2021, 237, 121591.	4.5	31
273	Clean, low-carbon but corrupt? Examining corruption risks and solutions for the renewable energy sector in Mexico, Malaysia, Kenya and South Africa. Energy Strategy Reviews, 2021, 38, 100723.	3.3	31
274	Navigating tensions between rapid and just low-carbon transitions. Environmental Research Letters, 2022, 17, 041006.	2.2	31
275	Taking it outside: Exploring social opposition to 21 early-stage experiments in radical climate interventions. Energy Research and Social Science, 2022, 90, 102594.	3.0	31
276	Reassessing Energy Security and the Trans-ASEAN Natural Gas Pipeline Network in Southeast Asia. Pacific Affairs, 2009, 82, 467-486.	0.4	30
277	Early modes of transport in the United States: Lessons for modern energy policymakers. Policy and Society, 2009, 27, 411-427.	2.9	30
278	Energy Technology, Politics, and Interpretative Frames: Shale Gas Fracking in Eastern Europe. Global Environmental Politics, 2016, 16, 50-69.	1.7	30
279	Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands. Renewable Energy, 2016, 85, 642-648.	4.3	30
280	Inter-niche competition on ice? Socio-technical drivers, benefits and barriers of the electric vehicle transition in Iceland. Environmental Innovation and Societal Transitions, 2020, 35, 1-20.	2.5	30
281	Security of energy services and uses within urban households. Current Opinion in Environmental Sustainability, 2011, 3, 218-224.	3.1	29
282	Conceptualizing and evaluating best practices in electricity and water regulatory governance. Energy, 2011, 36, 4340-4352.	4.5	29
283	India's energy security: A sample of business, government, civil society, and university perspectives. Energy Policy, 2011, 39, 1254-1264.	4.2	29
284	Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe. Journal of Transport Geography, 2019, 78, 214-229.	2.3	29
285	Beyond states: Harnessing sub-national actors for the deep decarbonisation of cities, regions, and businesses. Energy Research and Social Science, 2020, 70, 101738.	3.0	29
286	A perspective on the human dimensions of a transition to net-zero energy systems. Energy and Climate Change, 2021, 2, 100042.	2.2	29
287	Renewable Energy: Economically Sound, Politically Difficult. Electricity Journal, 2008, 21, 18-29.	1.3	28
288	And then what happened? A retrospective appraisal of China's Renewable Energy Development Project (REDP). Renewable Energy, 2011, 36, 3154-3165.	4.3	28

#	Article	IF	CITATIONS
289	The importance of scale to energy security. Journal of Integrative Environmental Sciences, 2012, 9, 167-180.	1.0	28
290	The complexity of climate justice. Nature Climate Change, 2013, 3, 959-960.	8.1	28
291	Pain without gain? Reviewing the risks and rewards of investing in Russian coal-fired electricity. Applied Energy, 2015, 154, 970-986.	5.1	28
292	Rethinking the spatiality of Nordic electric vehicles and their popularity in urban environments: Moving beyond the city?. Journal of Transport Geography, 2020, 82, 102557.	2.3	28
293	Seven suppositions about energy security in the United States. Journal of Cleaner Production, 2011, 19, 1147-1157.	4.6	27
294	They'll be dammed: the sustainability implications of the Sarawak Corridor of Renewable Energy (SCORE) in Malaysia. Sustainability Science, 2013, 8, 121-133.	2.5	27
295	Major hydropower states, sustainable development, and energy security: Insights from a preliminary cross-comparative assessment. Energy, 2018, 142, 1074-1082.	4.5	27
296	Rethinking the governance of energy poverty in sub-Saharan Africa: Reviewing three academic perspectives on electricity infrastructure investment. Renewable and Sustainable Energy Reviews, 2019, 111, 344-354.	8.2	27
297	Transformative versus conservative automotive innovation styles: Contrasting the electric vehicle manufacturing strategies for the BMW i3 and Fiat 500e. Environmental Innovation and Societal Transitions, 2019, 33, 45-60.	2.5	27
298	Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion. Energy Policy, 2021, 153, 112196.	4.2	27
299	Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice. Renewable and Sustainable Energy Reviews, 2022, 167, 112699.	8.2	27
300	Paradigms and poverty in global energy policy: research needs for achieving universal energy access. Environmental Research Letters, 2016, 11, 064014.	2.2	26
301	Supply chain integration for low-carbon buildings: A critical interdisciplinary review. Renewable and Sustainable Energy Reviews, 2019, 113, 109274.	8.2	26
302	Anarchy, war, or revolt? Radical perspectives for climate protection, insurgency and civil disobedience in a low-carbon era. Energy Research and Social Science, 2022, 86, 102416.	3.0	26
303	Using Criminalization and Due Process to Reduce Scientific Misconduct. American Journal of Bioethics, 2005, 5, W1-W7.	0.5	25
304	Bending bamboo: Restructuring rural electrification in Sarawak, Malaysia. Energy for Sustainable Development, 2011, 15, 240-253.	2.0	25
305	Snakes in the Grass: The Energy Security Implications of Medupi. Electricity Journal, 2011, 24, 92-100.	1.3	25
306	Miracle or mirage? The promise and peril of desert energy part 1. Renewable Energy, 2013, 50, 628-636.	4.3	25

#	Article	IF	CITATIONS
307	The rhetorical fantasy of energy transitions: implications for energy policy and analysis. Technology Analysis and Strategic Management, 2014, 26, 837-854.	2.0	25
308	Conspicuous diffusion: Theorizing how status drives innovation in electric mobility. Environmental Innovation and Societal Transitions, 2019, 31, 154-169.	2.5	25
309	Energy sustainability, stakeholder conflicts, and the future of hydrogen in Denmark. Renewable and Sustainable Energy Reviews, 2014, 39, 891-897.	8.2	24
310	"Supply push―or "demand pull?― Strategic recommendations for the responsible development of biofuel in China. Renewable and Sustainable Energy Reviews, 2015, 52, 382-392.	8.2	24
311	US liquefied natural gas (LNG) exports: Boom or bust for the global climate?. Energy, 2017, 141, 1671-1680.	4.5	24
312	Building or stumbling blocks? Assessing the performance of polycentric energy and climate governance networks. Energy Policy, 2018, 118, 317-324.	4.2	24
313	A Research Agenda to Better Understand the Human Dimensions of Energy Transitions. Frontiers in Psychology, 2021, 12, 672776.	1.1	24
314	Mixed feelings: A review and research agenda for emotions in sustainability transitions. Environmental Innovation and Societal Transitions, 2021, 40, 609-624.	2.5	24
315	Island wind-hydrogen energy: A significant potential US resource. Renewable Energy, 2008, 33, 1928-1935.	4.3	23
316	Exploring the challenges of energy and resources network governance. Energy Policy, 2012, 42, 409-418.	4.2	23
317	The energy use implications of 5C: Reviewing whole network operational energy, embodied energy, and indirect effects. Renewable and Sustainable Energy Reviews, 2022, 157, 112033.	8.2	23
318	Microhydro electrification and climate change adaptation in Nepal: socioeconomic lessons from the Rural Energy Development Program (REDP). Mitigation and Adaptation Strategies for Global Change, 2013, 18, 407-427.	1.0	22
319	lt's about dam time: Improving microhydro electrification in Tanzania. Energy for Sustainable Development, 2013, 17, 378-385.	2.0	22
320	Of fast lanes, flora, and foreign workers: Managing land use conflicts in Singapore. Land Use Policy, 2013, 30, 167-176.	2.5	22
321	Left out in the cold: energy justice and Arctic energy research. Journal of Environmental Studies and Sciences, 2015, 5, 302-307.	0.9	22
322	Responsible or reckless? A critical review of the environmental and climate assessments of mineral supply chains. Environmental Research Letters, 2020, 15, 103009.	2.2	22
323	The importance of open and closed styles of energy research. Social Studies of Science, 2010, 40, 903-930.	1.5	21
324	A critical stakeholder analysis of the Trans-ASEAN Gas Pipeline (TAGP) Network. Land Use Policy, 2010, 27, 788-797.	2.5	21

#	Article	IF	CITATIONS
325	Energy democracy, dissent and discourse in the party politics of shale gas in the United Kingdom. Environmental Politics, 2020, 29, 1239-1263.	3.4	21
326	Social media and disasters: human security, environmental racism, and crisis communication in Hurricane Irma response. Environmental Sociology, 2020, 6, 291-306.	1.7	21
327	Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000-2019). Research Policy, 2021, 50, 104272.	3.3	21
328	Sociotechnical typologies for national energy transitions. Environmental Research Letters, 2020, 15, 111001.	2.2	21
329	Who finances renewable energy in Europe? Examining temporality, authority and contestation in solar and wind subsidies in Poland, the Netherlands and the United Kingdom. Energy Strategy Reviews, 2021, 38, 100730.	3.3	21
330	The "whole systems―energy sustainability of digitalization: Humanizing the community risks and benefits of Nordic datacenter development. Energy Research and Social Science, 2022, 88, 102493.	3.0	21
331	Climate policy for a net-zero future: ten recommendations for Direct Air Capture. Environmental Research Letters, 2022, 17, 074014.	2.2	21
332	From a hard place to a rock: Questioning the energy security of a coal-based economy. Energy Policy, 2011, 39, 4664-4670.	4.2	20
333	Feed-In Tariffs and Other Support Mechanisms for Solar PV Promotion. , 2012, , 73-109.		20
334	Energy security: challenges and needs. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 51-59.	1.9	20
335	The Energy Trilemma and the Smart Grid: Implications Beyond the United States. Asia and the Pacific Policy Studies, 2017, 4, 70-84.	0.6	20
336	User innovation, niche construction and regime destabilization in heat pump transitions. Environmental Innovation and Societal Transitions, 2021, 39, 119-140.	2.5	20
337	Controllable, frightening, or fun? Exploring the gendered dynamics of smart home technology preferences in the United Kingdom. Energy Research and Social Science, 2021, 77, 102105.	3.0	20
338	Culture, energy and climate sustainability, and smart home technologies: A mixed methods comparison of four countries. Energy and Climate Change, 2021, 2, 100035.	2.2	20
339	Industrial decarbonization via natural gas: A critical and systematic review of developments, socio-technical systems and policy options. Energy Research and Social Science, 2022, 90, 102638.	3.0	20
340	The interpretive flexibility of oil and gas pipelines: Case studies from Southeast Asia and the Caspian Sea. Technological Forecasting and Social Change, 2011, 78, 610-620.	6.2	19
341	Gers gone wired: Lessons from the Renewable Energy and Rural Electricity Access Project (REAP) in Mongolia. Energy for Sustainable Development, 2011, 15, 32-40.	2.0	19
342	Empowered? Evaluating Japan's national energy strategy under the DPJ administration. Energy Policy, 2011, 39, 1865-1876.	4.2	19

#	Article	IF	CITATIONS
343	Valuing the manufacturing externalities of wind energy: assessing the environmental profit and loss of wind turbines in Northern Europe. Wind Energy, 2016, 19, 1623-1647.	1.9	19
344	The presidential politics of climate discourse: Energy frames, policy, and political tactics from the 2016 Primaries in the United States. Energy Policy, 2017, 111, 127-136.	4.2	19
345	Power struggles: Governing renewable electricity in a time of technological disruption. Geoforum, 2021, 118, 93-105.	1.4	19
346	Beyond climate, culture and comfort in European preferences for low-carbon heat. Global Environmental Change, 2021, 66, 102200.	3.6	19
347	Making the internet globally sustainable: Technical and policy options for improved energy management, governance and community acceptance of Nordic datacenters. Renewable and Sustainable Energy Reviews, 2022, 154, 111793.	8.2	19
348	The problem with the "portfolio approach―in American energy policy. Policy Sciences, 2008, 41, 245-261.	1.5	18
349	Critically weighing the costs and benefits of a nuclear renaissance. Journal of Integrative Environmental Sciences, 2010, 7, 105-123.	1.0	18
350	Exploring the Conditions for Cooperative Energy Governance: A Comparative Study of Two Asian Pipelines. Asian Studies Review, 2010, 34, 489-511.	0.7	18
351	The contested politics of the Asian atom: peripheralisation and nuclear power in South Korea and Japan. Environmental Politics, 2018, 27, 686-711.	3.4	18
352	Energy transitions and mass publics: Manipulating public perception and ideological entrenchment in Japanese nuclear power policy. Renewable and Sustainable Energy Reviews, 2019, 101, 295-304.	8.2	18
353	Between hope, hype, and hell: Electric mobility and the interplay of fear and desire in sustainability transitions. Environmental Innovation and Societal Transitions, 2020, 35, 88-102.	2.5	18
354	Policy mixes for more sustainable smart home technologies. Environmental Research Letters, 2021, 16, 054073.	2.2	18
355	Don't let disaster recovery perpetuate injustice. Nature, 2017, 549, 433-433.	13.7	18
356	Between the sun and us: Expert perceptions on the innovation, policy, and deep uncertainties of space-based solar geoengineering. Renewable and Sustainable Energy Reviews, 2022, 158, 112179.	8.2	18
357	Reconstructing Iraq: merging discourses of security and development. Review of International Studies, 2007, 33, 223-243.	1.1	17
358	Coal and nuclear technologies: creating a false dichotomy for American energy policy. Policy Sciences, 2007, 40, 101-122.	1.5	17
359	Pipelines, crisis and capital: understanding the contested regionalism of Southeast Asia. Pacific Review, 2010, 23, 625-647.	1.3	17
360	Sewing climate-resilient seeds: implementing climate change adaptation best practices in rural Cambodia. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 699-720.	1.0	17

#	Article	IF	CITATIONS
361	Bolstering resilience in the coconut kingdom: Improving adaptive capacity to climate change in Vanuatu. Energy Policy, 2012, 50, 843-848.	4.2	17
362	Mapping and interpreting critical hydrogen stakeholders in Denmark. International Journal of Hydrogen Energy, 2014, 39, 7634-7637.	3.8	17
363	Novel or normal? Electric vehicles and the dialectic transition of Nordic automobility. Energy Research and Social Science, 2020, 69, 101642.	3.0	17
364	From thermal comfort to conflict: The contested control and usage of domestic smart heating in the United Kingdom. Energy Research and Social Science, 2020, 69, 101566.	3.0	17
365	Empowering the Great Energy Transition. , 2019, , .		17
366	Sweet nectar of the Gaia: Lessons from Ethiopia's "Project Gaia― Energy for Sustainable Development, 2013, 17, 245-251.	2.0	16
367	Testing the efficacy of voluntary urban greenhouse gas emissions inventories. Climatic Change, 2016, 139, 141-154.	1.7	16
368	Countering a corrupt oil boom: Energy justice, Natural Resource Funds, and São Tomé e PrÃncipe's Oil Revenue Management Law. Environmental Science and Policy, 2016, 55, 196-207.	2.4	16
369	Comparing consumer perceptions of energy security, policy, and low-carbon technology: Insights from Denmark. Energy Research and Social Science, 2016, 11, 79-91.	3.0	16
370	Frame envy in energy policy ideology: A social constructivist framework for wicked energy problems. Energy Policy, 2017, 109, 623-630.	4.2	16
371	From forests to factories: How modern slavery deepens the crisis of climate change. Energy Research and Social Science, 2021, 77, 102096.	3.0	16
372	Falsification and Demarcation in Astronomy and Cosmology. Bulletin of Science, Technology and Society, 2005, 25, 53-62.	1.1	15
373	Spheres of Argument Concerning Oil Exploration in the Arctic National Wildlife Refuge: A Crisis of Environmental Rhetoric?. Environmental Communication, 2008, 2, 340-361.	1.2	15
374	A transition to plug-in hybrid electric vehicles (PHEVs): why public health professionals must care. Journal of Epidemiology and Community Health, 2010, 64, 185-187.	2.0	15
375	National energy governance in the United States. Journal of World Energy Law and Business, 2011, 4, 97-123.	0.3	15
376	Collaborate, involve, or defend? A critical stakeholder assessment and strategy for the Danish hydrogen electrolysis industry. International Journal of Hydrogen Energy, 2014, 39, 20879-20887.	3.8	15
377	Positive Externalities of Decarbonization: Quantifying the Full Potential of Avoided Deaths and Displaced Carbon Emissions from Renewable Energy and Nuclear Power. Environmental Science & Technology, 2021, 55, 5258-5271.	4.6	15
378	Meeting Targets' Missing People: The Energy Security Implications of the Sarawak Corridor of Renewable Energy (SCORE). Contemporary Southeast Asia, 2011, 33, 56.	0.2	15

#	Article	IF	CITATIONS
379	Research frontiers for multi-system dynamics and deep transitions. Environmental Innovation and Societal Transitions, 2021, 41, 52-56.	2.5	15
380	Towards a multi-scalar and multi-horizon framework of energy injustice: A whole systems analysis of Estonian energy transition. Political Geography, 2022, 93, 102544.	1.3	15
381	Risk–risk governance in a lowâ€carbon future: Exploring institutional, technological, and behavioral tradeoffs in climate geoengineering pathways. Risk Analysis, 2023, 43, 838-859.	1.5	15
382	The avian and wildlife costs of fossil fuels and nuclear power. Journal of Integrative Environmental Sciences, 2012, 9, 255-278.	1.0	14
383	A Comparison of Chinese, Indian, and Japanese Perceptions of Energy Security. Asian Survey, 2012, 52, 949-969.	0.5	14
384	Environmental Issues, Climate Changes, and Energy Security in Developing Asia. SSRN Electronic Journal, 0, , .	0.4	14
385	The political economy of pollution markets: Historical lessons for modern energy and climate planners. Renewable and Sustainable Energy Reviews, 2015, 49, 943-953.	8.2	14
386	Navigating the "paradox of openness―in energy and transport innovation: Insights from eight corporate clean technology research and development case studies. Energy Policy, 2017, 105, 236-245.	4.2	14
387	Rethinking Energy Statecraft: United States Foreign Policy and the Changing Geopolitics of Energy. Global Policy, 2017, 8, 422-425.	1.0	14
388	A fair trade? Expert perceptions of equity, innovation, and public awareness in China's future Emissions Trading Scheme. Climatic Change, 2021, 164, 31.	1.7	14
389	"We're not dead yet!": Extreme energy and transport poverty, perpetual peripheralization, and spatial justice among Gypsies and Travellers in Northern Ireland. Renewable and Sustainable Energy Reviews, 2022, 160, 112262.	8.2	14
390	Comment on "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power― Environmental Science & Technology, 2013, 47, 6715-6717.	4.6	13
391	Better modelling for the energy mix. Nature, 2014, 515, 198-198.	13.7	13
392	Torn between war and peace: Critiquing the use of war to mobilize peaceful climate action. Energy Policy, 2017, 104, 50-55.	4.2	13
393	Testing smarter control and feedback with users: Time, temperature and space in household heating preferences and practices in a Living Laboratory. Global Environmental Change, 2020, 65, 102185.	3.6	13
394	Volatile Photovoltaics: Green Industrialization, Sacrifice Zones, and the Political Ecology of Solar Energy in Germany. Annals of the American Association of Geographers, 0, , 1-23.	1.5	13
395	The dynamics of global public research funding on climate change, energy, transport, and industrial decarbonisation. Renewable and Sustainable Energy Reviews, 2022, 162, 112420.	8.2	13
396	Big Is Beautiful: The Case for Federal Leadership on a National Renewable Portfolio Standard. Electricity Journal, 2007, 20, 48-61.	1.3	12

#	Article	IF	CITATIONS
397	Exploring the hypothetical limits to a nuclear and renewable electricity future. International Journal of Energy Research, 2010, 34, 1183-1194.	2.2	12
398	Emissions accounting for biomass energy with CCS. Nature Climate Change, 2015, 5, 495-496.	8.1	12
399	States, Markets, and Institutions: Integrating International Political Economy and Global Energy Politics. , 2016, , 3-44.		12
400	Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia. Energy Policy, 2018, 120, 635-643.	4.2	12
401	Cars and kids: Childhood perceptions of electric vehicles and sustainable transport in Denmark and the Netherlands. Technological Forecasting and Social Change, 2019, 144, 182-192.	6.2	12
402	Is sunshine the best disinfectant? Evaluating the global effectiveness of the Extractive Industries Transparency Initiative (EITI). The Extractive Industries and Society, 2020, 7, 1451-1471.	0.7	12
403	Transboundary hydropower in contested contexts: Energy security, capabilities, and justice in comparative perspective. Energy Strategy Reviews, 2021, 37, 100698.	3.3	12
404	Cursed by crude: the corporatist resource curse and the baku–tbilisi–ceyhan pipeline. Environmental Policy and Governance, 2011, 21, 42-57.	2.1	11
405	A comparative analysis of solar home system programmes in China, Laos, Mongolia and Papua New Guinea. Progress in Development Studies, 2012, 12, 315-335.	1.0	11
406	Energy Security: Insights from a Ten Country Comparison. Energy and Environment, 2012, 23, 559-586.	2.7	11
407	Overcoming the Global Injustices of Energy Poverty. Environment, 2012, 54, 14-28.	0.8	11
408	Leveraging user-based innovation in vehicle-to-X and vehicle-to-grid adoption: A Nordic case study. Journal of Cleaner Production, 2021, 287, 125591.	4.6	11
409	Energy and transport poverty amidst plenty: Exploring just transition, lived experiences and policy implications in Iceland. Renewable and Sustainable Energy Reviews, 2022, 163, 112533.	8.2	11
410	Rethinking Net-Zero systems, spaces, and societies: "Hard―versus "soft―alternatives for nature-based and engineered carbon removal. Global Environmental Change, 2022, 75, 102530.	3.6	11
411	Resolving the impasse in American energy policy: The case for a transformational R&D strategy at the U.S. Department of Energy. Renewable and Sustainable Energy Reviews, 2009, 13, 346-361.	8.2	10
412	Barriers, emotions, and motivational levers for lifestyle transformation in Norwegian household decarbonization pathways. Climatic Change, 2021, 165, 1.	1.7	10
413	Megaprojects: Examining their governance and sociotechnical transitions dynamics. Environmental Innovation and Societal Transitions, 2021, 41, 89-92.	2.5	10
414	Virtue or vice? Solar micro-grids and the dualistic nature of low-carbon energy transitions in rural Ghana. Energy Research and Social Science, 2022, 83, 102352.	3.0	10

#	Article	IF	CITATIONS
415	Climate protection or privilege? A whole systems justice milieu of twenty negative emissions and solar geoengineering technologies. Political Geography, 2022, 97, 102702.	1.3	10
416	Green Means â€~Go?'—A Colorful Approach to a U.S. National Renewable Portfolio Standard. Electricity Journal, 2006, 19, 19-32.	1.3	9
417	Distributed Generation (DG) and the American Electric Utility System: What is Stopping It?. Journal of Energy Resources Technology, Transactions of the ASME, 2008, 130, .	1.4	9
418	A Game of Cat and Fish: How to Restore the Balance in Sustainable Fisheries Management. Ocean Development and International Law, 2009, 40, 97-125.	0.2	9
419	Sheikhs on barrels: what Saudi Arabians think about energy security. Contemporary Arab Affairs, 2011, 4, 208-224.	0.1	9
420	Innovation in the Malaysian Waste-to-Energy Sector: Applications with Global Potential. Electricity Journal, 2011, 24, 29-41.	1.3	9
421	Reconfiguring territoriality and energy security: global production networks and the Baku–Tbilisi–Ceyhan (BTC) pipeline. Journal of Cleaner Production, 2012, 32, 210-218.	4.6	9
422	Nuclear accidents call for transdisciplinary nuclear energy research. Sustainability Science, 2015, 10, 179-183.	2.5	9
423	The Political Ecology and Justice of Energy. , 2016, , 529-558.		9
424	Temporality, consumption, and conflict: exploring user-based injustices in European low-carbon transitions. Technology Analysis and Strategic Management, 2021, 33, 770-782.	2.0	9
425	Assessing U.S. energy policy. Daedalus, 2006, 135, 5-11.	0.9	8
426	Replacing tedium with transformation: Why the US Department of Energy needs to change the way it conducts long-term R&D. Energy Policy, 2008, 36, 923-928.	4.2	8
427	Sound climate, energy, and transport policy for a carbon constrained world. Policy and Society, 2009, 27, 273-283.	2.9	8
428	Four Problems with Global Carbon Markets: A Critical Review. Energy and Environment, 2011, 22, 681-694.	2.7	8
429	Environmental Conservation Problems and Possible Solutions in Myanmar. Contemporary Southeast Asia, 2012, 34, 217.	0.2	8
430	Wrestling with the Hydra of Nuclear Waste Storage in the United States. Electricity Journal, 2013, 26, 67-78.	1.3	8
431	Peeling the Energy Pickle: Expert Perceptions on Overcoming Nepal's Electricity Crisis. South Asia: Journal of South Asia Studies, 2013, 36, 496-519.	0.2	8
432	National context drives concerns. Nature Energy, 2018, 3, 820-821.	19.8	8

#	Article	IF	CITATIONS
433	Technological frames and the politics of automated electric Light Rail Rapid Transit in Poland and the United Kingdom. Technology in Society, 2019, 59, 101190.	4.8	8
434	Further reflections on vulnerability and resistance in the United Kingdom's smart meter transition. Energy Policy, 2019, 124, 411-417.	4.2	8
435	Visions of Energy Futures. , 0, , .		8
436	Can Prosuming Become Perilous? Exploring Systems of Control and Domestic Abuse in the Smart Homes of the Future. Frontiers in Energy Research, 2021, 9, .	1.2	8
437	Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi. Journal of Transport Geography, 2022, 98, 103256.	2.3	8
438	Tangled transitions: Exploring the emergence of local electricity exchange in France, Switzerland and Great Britain. Technological Forecasting and Social Change, 2022, 180, 121677.	6.2	8
439	North Korea and Illegal Narcotics: Smoke but No Fire?. Asia Policy, 2009, 1, 89-111.	0.2	7
440	Building Umbrellas or Arks? Three Alternatives to Carbon Credits and Offsets. Electricity Journal, 2010, 23, 29-40.	1.3	7
441	Questioning the Safety and Reliability of Nuclear Power. An Assessment of Nuclear Incidents and Accidents. Gaia, 2011, 20, 95-103.	0.3	7
442	Humanizing heat as a service: Cost, creature comforts and the diversity of smart heating practices in the United Kingdom. Energy and Climate Change, 2020, 1, 100012.	2.2	7
443	Of actors, cities and energy systems: advancing the transformative potential of urban electrification. Progress in Energy, 2021, 3, 032002.	4.6	7
444	<p>Reactors, Weapons, X-Rays, and Solar Panels: Using SCOT, Technological Frame, Epistemic Culture, and Actor Network Theory to Investigate Technology</p> . The Journal of Technology Studies, 2022, 32, 4-14.	0.7	7
445	Technological Systems and Momentum Change: American Electric Utilities, Restructuring, and Distributed Generation Technologies. The Journal of Technology Studies, 2006, 32, .	0.7	7
446	Science for whom? Examining the data quality, themes, and trends in 30Âyears of public funding for global climate change and energy research. Energy Research and Social Science, 2022, 89, 102645.	3.0	7
447	Megawatts are not megawatt-hours and other responses to Willis et al Energy Policy, 2010, 38, 2070-2073.	4.2	6
448	Erasing Knowledge: The Discursive Structure of Globalization. Social Epistemology, 2010, 24, 15-28.	0.7	6
449	Broken by Design. Science, Technology and Society, 2010, 15, 1-25.	1.1	6
450	Sustainability principles of the Asian Development Bank's (ADB's) energy policy: An opportunity for greater future synergies. Renewable Energy, 2012, 48, 173-182.	4.3	6

#	Article	IF	CITATIONS
451	Nuclear power: Serious risks. Science, 2016, 354, 1112-1112.	6.0	6
452	A Critical Review of the Costs of Advertising: a Transformative Consumer Research Perspective. Journal of Consumer Policy, 2016, 39, 119-140.	0.6	6
453	From Flying Cars to Tesla: Examining the Personal Automobile Preferences of Primary Schoolchildren in Denmark and the Netherlands. Energy Research and Social Science, 2019, 56, 101204.	3.0	6
454	The Technical Challenges to V2G. , 2019, , 65-89.		6
455	Placing people at the heart of climate action. , 2022, 1, e0000035.		6
456	From social science surveys to building energy modeling: Investigating user-building interaction for low-carbon heating solutions in Europe. Energy Reports, 2022, 8, 7188-7199.	2.5	6
457	Eroding Wilderness: The Ecological, Legal, Political, and Social Consequences of Oil and Natural Gas Development in the Arctic National Wildlife Refuge (ANWR). Energy and Environment, 2006, 17, 549-567.	2.7	5
458	Environmental Damage, Abandoned Treaties, and Fossil-Fuel Dependence: The Coming Costs of Oil-and-Gas Exploration in the "1002 Area―of the Arctic National Wildlife Refuge. Environment, Development and Sustainability, 2007, 9, 187-201.	2.7	5
459	All Flash, No Light: The Kabuki Dance Opposing a National Renewable Portfolio Standard. Electricity Journal, 2008, 21, 41-54.	1.3	5
460	Not Your Father's Y2K: Preparing the North American Power Grid for the Perfect Solar Storm. Electricity Journal, 2011, 24, 47-61.	1.3	5
461	Using Ecosystem Valuation to Protect the Atlantic Rainforest: The Case of the Oasis Project. Society and Natural Resources, 2011, 24, 1096-1104.	0.9	5
462	Miracle or mirage? The promise and peril of desert energy part 2. Renewable Energy, 2013, 50, 820-825.	4.3	5
463	Rethinking the Scale, Structure & Scope of U.S. Energy Institutions. Daedalus, 2013, 142, 129-145.	0.9	5
464	The social acceptance of artificial photosynthesis: towards a conceptual framework. Interface Focus, 2015, 5, 20140089.	1.5	5
465	International Political Economy and Renewable Energy: Hydroelectric Power and the Resource Curse. International Studies Review, 0, , .	0.8	5
466	History, Definition, and Status of V2G. , 2019, , 1-31.		5
467	Humanizing hydrocarbon frontiers: the "lived experience―of shale gas fracking in the United Kingdom's Fylde communities. Local Environment, 2020, 25, 944-966.	1.1	5
468	On the socio-technical potential for onshore wind in Europe: A response to critics. Energy Policy, 2021, 151, 112147.	4.2	5

#	Article	IF	CITATIONS
469	Energy Access and Energy Security in Asia and the Pacific. SSRN Electronic Journal, 0, , .	0.4	5
470	Cobenefits and Trade-Offs of Green and Clean Energy: Evidence from the Academic Literature and Asian Case Studies. SSRN Electronic Journal, 0, , .	0.4	5
471	Necessary but Insufficient: State Renewable Portfolio Standards and Climate Change Policies. Environment, 2007, 49, 20-31.	0.8	4
472	The Hidden Factors That Make Wind Energy Cheaper than Natural Gas in the United States. Electricity Journal, 2011, 24, 84-95.	1.3	4
473	Energy Poverty and Development in Papua New Guinea: Learning from the Teacher's Solar Lighting Project. Forum for Development Studies, 2013, 40, 327-349.	0.7	4
474	Climate justice more vital than democracy. Nature, 2015, 526, 323-323.	13.7	4
475	Addressing Climate Change. , 2010, , 109-124.		4
476	Urban Electrification: Knowledge Pathway Toward an Integrated Research and Development Agenda. SSRN Electronic Journal, 0, , .	0.4	4
477	†We're going all out for shale:' explaining shale gas energy policy failure in the United Kingdom. Energy Policy, 2022, 168, 113132.	4.2	4
478	Developing future retail electricity markets with a customer-centric focus. Energy Policy, 2022, 168, 113147.	4.2	4
479	Constructing a Rogue State: American Post-Cold War Security Discourse and North Korean Drug Trafficking*. New Political Science, 2005, 27, 497-520.	0.2	3
480	Promoting a level playing field for energy options: electricity alternatives and the case of the Indian Point Energy Center. Energy Efficiency, 2008, 1, 35-48.	1.3	3
481	A Matter of Stability and Equity: The Case for Federal Action on Renewable Portfolio Standards in the U.S Energy and Environment, 2008, 19, 241-261.	2.7	3
482	Contested Regionalism in Southeast Asia: The Politics of the Trans-Asean Gas Pipeline Project. SSRN Electronic Journal, 0, , .	0.4	3
483	Revoking a License to Krill: What the United States Can Do to Save Fish Stocks in Antarctica. Journal of International Wildlife Law and Policy, 2011, 14, 1-50.	0.3	3
484	Chapter 8 Bhutan: Modeling and Adaptation in the Eastern Himalayas. Community, Environment and Disaster Risk Management, 2012, , 141-158.	0.1	3
485	Feed-in Tariffs and Other Support Mechanisms for Solar PV Promotion. , 2013, , .		3

The Regulatory and Political Challenges to V2G. , 2019, , 117-139.

3

#	Article	IF	CITATIONS
487	Energy Myth Six – The Barriers to New and Innovative Energy Technologies are Primarily Technical: The Case of Distributed Generation (DG). , 2007, , 145-169.		3
488	Energy Security and Competition in Asia: Challenges and Prospects for China and Southeast Asia. , 2011, , 210-229.		3
489	Advancing the international political economy of climate change adaptation: political ecology, political economy and social justice. , 2018, , .		3
490	A perspective on treaties, maximum wages, and carbon currencies: Innovative policy instruments for global decarbonization. Energy Policy, 2022, 160, 112702.	4.2	3
491	Effective policies for reducing household energy use: Insights from Norway. Applied Energy, 2022, 318, 119201.	5.1	3
492	Towards codes of practice for navigating the academic peer review process. Energy Research and Social Science, 2022, 89, 102675.	3.0	3
493	Measuring Energy Security Performance in the OECD. , 0, , .		2
494	Expanding Rural Access to Renewable Energy: Lessons from Sri Lanka's Energy Services Delivery Project (ESDP). Journal of Resources Energy and Development, 2013, 10, 79-104.	0.2	2
495	Subterranean Struggles: New Dynamics of Mining, Oil, and Gas in Latin America by Anthony Bebbington and Jeffrey Bury (eds.) (review). Journal of Latin American Geography, 2014, 13, 223-224.	0.0	2
496	Exposing the Paradoxes of Climate and Energy Governance. International Studies Review, 2014, 16, 294-297.	0.8	2
497	The Economic and Business Challenges to V2G. , 2019, , 91-116.		2
498	Channeling diverse innovation pressures to support European sustainability transitions. Environmental Research Letters, 2021, 16, 061001.	2.2	2
499	Critically assessing and projecting the frequency, severity, and cost of major energy accidents. The Extractive Industries and Society, 2021, 8, 100885.	0.7	2
500	Due Process and the World Bankâ \in Ms Inspection Panel. , 2013, , 66-89.		2
501	Reply to: Nuclear power and renewable energy are both associated with national decarbonization. Nature Energy, 2022, 7, 30-31.	19.8	2
502	Rising to the Challenge of Sustainability: Three Cases of Climate and Energy Governance. , 2011, , 551-570.		1
503	Energy-efficient municipal heating: preliminary lessons from Beijing, Kathmandu and Edinburgh. International Journal of Ambient Energy, 2011, 32, 146-160.	1.4	1

#	Article	IF	CITATIONS
505	Introduction to the Political Economy of Climate Change Adaptation. , 2016, , 1-32.		1
506	Reply to 'Broaden research on the human dimensions of climate change'. Nature Climate Change, 2016, 6, 1051-1051.	8.1	1
507	Consumers, Society and V2G. , 2019, , 141-165.		1
508	The Potential Benefits of V2G. , 2019, , 33-64.		1
509	Responsibility and Ecuador's YasunÃ-ITT Initiative. , 2013, , 194-217.		1
510	V2G Deployment Pathways and Policy Recommendations. , 2019, , 167-190.		1
511	Digital bricolage: Infrastructuring lower carbon digital space via Nordic datacentre development. Political Geography, 2022, 96, 102617.	1.3	1
512	Conclusions - Replacing Myths With Maxims: Rethinking The Relationship Between Energy And American Society. , 2007, , 351-366.		0
513	Introduction $\hat{a} \in $ The Compelling Tangle of Energy and American Society. , 2007, , 1-21.		0
514	Innovating the innovators: the case for transformational energy Research and Development. International Journal of Energy Technology and Policy, 2008, 6, 368.	0.1	0
515	Addendum to "Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity―[Energy Policy 37 (6) (2009) 2241–2248]. Energy Policy, 2010, 38, 4750.	4.2	0
516	Off-grid solar electrification for rural development: the implications of the Renewable Energy Development Project (REDP) in China. International Journal of Regulation and Governance, 2012, 12, 19-48.	0.1	0
517	The global energy system. , 0, , 31-87.		0
518	Virtue and energy efficiency. , 0, , 88-124.		0
519	Utility and energy externalities. , 0, , 125-156.		0
520	Energy and human rights. , 0, , 157-190.		0
521	Energy poverty, access, and welfare. , 0, , 223-255.		0
522	Energy subsidies and freedom. , 0, , 256-287.		0

#	Article	IF	CITATIONS
523	Energy resources and future generations. , 0, , 288-318.		0
524	Fairness, responsibility, and climate change. , 0, , 319-352.		0
525	The imperative of making just energy decisions. , 0, , 353-377.		0
526	Managing the electricity-water nexus in China, France, India and the United States. , 0, , 155-171.		0
527	Coal and the Historical Complexity of Energy Security: Peter A. Shulman, Coal and Empire. Technology and Culture, 2016, 57, 460-463.	0.0	0
528	The Perils of Climate Diplomacy: The Political Economy of the UNFCCC. , 2016, , 110-135.		0
529	Bamboo Thumping Bandits: The Political Economy of Climate Adaptation in Bangladesh. , 2016, , 33-53.		0
530	Principles and Best Practices for Climate Change Adaptation. , 2016, , 136-161.		0
531	Insights from Political Economy for Adaptation Policy and Practice. , 2016, , 162-179.		0
532	Realizing and Problematizing a V2G Future. , 2019, , 191-233.		0
533	Policies for climate-neutral road transport. , 2021, , 149-174.		0
534	How to accelerate electrification? The leverage of policies. , 2021, , 57-75.		0
535	Intragenerational Equity and Climate Change Adaptation. , 2013, , 164-193.		0
536	Availability and Danish Energy Policy. , 2013, , 16-42.		0
537	State-Market Interrelations in the US Onshore and Offshore Oil and Gas Sectors. , 2015, , 171-197.		0
538	Governance and Legitimation in theÂTransition to Nordic Electric Mobility. , 2020, , 73-88.		0